
Ant Technology

Access iOS
User Guide

Document Version: 20231226

Ant Technology

Access iOS
User Guide

Document Version: 20231226

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement
and other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Access iOS User Guide·Legal disclaimer

> Document Version: 20231226 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

 Notice:

If the weight is set to 0, the server no
longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set
network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Access iOS User Guide·Document convent
ions

> Document Version: 20231226 I

Table of Contents
1.Integration method introduction
2.Create an application
3.Integrate by using CocoaPods based on the existing project
4.Advanced guide

4.1. mPaaS directory structure
4.2. mPaaS iOS framework
4.3. mPaaS Micro Applications and Services

4.3.1. Create a micro application
4.3.2. Create a service
4.3.3. Manage the micro application and service
4.3.4. Code sample of micro application

4.4. iOS language settings
4.5. Customize the city selection

5.Adaption to iOS
5.1. Upgrade guide of mPaaS 10.1.68
5.2. Privacy permission
5.3. mPaaS 10.1.60 baseline upgrade guide
5.4. Adapt to WKWebview
5.5. mPaaS 10.1.68 baseline adapt to Xcode 13
5.6. mPaaS 10.1.68 baseline adapt to iOS 15
5.7. mPaaS 10.1.68 baseline adapt to iOS 14
5.8. mPaaS 10.1.60 baseline adapt to iOS 13
5.9. mPaaS 10.1.32 baseline adapt to iOS 13

6.Reference
6.1. Customize the iOS navigation bar
6.2. Handle iOS conflict

06

07

09

18

18

19

31

31

33

35

37

40

41

43

43

45

50

54

57

58

59

60

63

67

67

77

Access iOS User Guide·Table of Contents

> Document Version: 20231226 I

6.3. Switch iOS environment
7.FAQ of mPaaS framework

79
83

Access iOS User Guide·Table of Contents

> Document Version: 20231226 II

Based on the progress and application scenarios of the iOS development project, you are
recommended to integrate the mPaaS mobile development platform by using CocoaPods
based on the existing project.
According to the progress and usage scenarios of iOS development project, we recommend
you to use the method of Integrate by using CocoaPods based on the existing project
to Integrate mPaaS.

Integrate by using CocoaPods based on the existing project
If the existing project uses Cocoapods to manage SDK dependencies, we recommend that you
use Cocoapods to access. For the procedure, see Integrate by using CocoaPods based on the
existing project.
In iOS, mPaaS uses the Objective-C development language. If your project uses the Swift
development language, you can introduce mPaaS Objective-C code by bridging.

Note
If you encounter problems on mPaaS integration, please search the group number
31591197 with DingTalk to join DingTalk group for further communication.

1.Integration method
introduction

Access iOS User Guide·Integration metho
d introduction

> Document Version: 20231226 6

To use mPaaS, you must first create an app in the mPaaS console and download a
configuration file.

Prerequisites
You have a developer account. For details about registering an account, see Register
accounts.

Create an mPaaS app
1. Log on to the mPaaS console.

Note
If you are using mPaaS on another platform (such as the Ant Financial open platform),
log on to the mPaaS console of the corresponding platform.

2. Click the Create an application button.
3. Complete the app information.

i. Enter the app name. Example: mPaaS Demo.
ii. Click + to upload the app icon. You can skip this step, and the app will use the default

icon in this case.
4. Click OK to finish creating the app. The application you just created is displayed.

Download the configuration file
1. On the app list page, click the name of the created app (such as the mPaaS Demo app

created in the previous step), and the following page appears:
The app name appears at the top left, where you can switch apps.
The left side of the page displays a list of component services provided by mPaaS.

2. Click iOS code configuration button to go to the Connect mPaaS to my application
page.

3. On the Connect mPaaS to my application page, click download the configuration
file to go to the Code Configuration page.

4. On the Code configuration page, enter Bundle ID, click the Download configuration
button, and download the app configuration file in .config format to the local computer
for subsequent development.
The content of the downloaded configuration file is in JSON format, as shown in the
following example:

2.Create an application
Access iOS User Guide·Create an applicati

on

> Document Version: 20231226 7

https://account.alibabacloud.com/login/login.htm?oauth_callback=https%253A%252F%252Fmpaaspub.console.aliyun.com%252F

{
 "appId":"ALIHK570DA89071940",
 "appKey":"ALIHK570DA89071940_IOS",

"base64Code":"/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAs
KCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAADAAMDASIAAhEBAxEB/8QAHwAAAQUBAQEBA
QEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0
KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIW
Gh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3
+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExB
hJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZG
VmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nn
a4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxFobXF3cwBkmTrM0HmXQB+kBWPpNmkFAwABAQAAAAQAAB4AAADA
AAAADAAAAIgAAAABAAAAAAAAAAAAAAAAAAAAAAAAABUAAAABAAAAAAAAAAAAAAAIAAAAAAAAANHdTmJ3AAAAAAAAA
AAAAADxaH5QCq+leJs3obVk3cvGfEt4FOAk+nk5+NcRqlEem7mc7MRMkTznyN2cLbpn8zaya0uSj0UMyD3j2ed1cm
djbngBAwF4dWZ3AwECBgEAEQEBCAFxdHNqb3ZxMnz0IBFj0fFkf+Z52g7YGBKQcQVacXVC9I6zKuUFgYCYm42oQhT
6utsiYv8Us68EQLL8fqzFPc8DZHdMUZuIpcECb+8/sdzvUl4/0YXe9HqTi2ytqojztIq9GUgmvDBYeZsCPJIdfKp8
FjGxp/bo6uhZIrjM5z4+eowoG9vwhVH/fbZ0rYY6zGr5L2IbB+TOOcHC9gH+druENFlgO7sY87UD4ApfgMf7d6fmB
HGjmBq1k/iQzYK2mCuznJpEKPZWf2bqTnVS2/r71P8AAMKgGAYAAAAA",
 "bundleId":"YourBundleID",
 "rootPath":"mpaas/ios/ALIHK570DA89071940-default",
 "workspaceId":"default",
 "syncport":"443",
 "syncserver":"msync.mpaas.cn-hongkong.aliyuncs.com",
 "pushPort":"443",
 "pushGW":"push.mpaas.cn-hongkong.aliyuncs.com",
 "rpcGW":"https://mgw.mpaas.cn-hongkong.aliyuncs.com/mgw.htm",
 "logGW":"https://mdap.mpaas.cn-hongkong.aliyuncs.com",
 "mpaasapi":"https://mpaasapi.mpaas.cn-hongkong.aliyuncs.com/mgw.htm",
 "mpaasConfigVersion":"V_1.0",
 "mpaasConfigEnv":"INTL_HK_CLOUD",
 "mpaasConfigPluginExpired":"",

"mpaasConfigLicense":"OI1Ozzu18RK2Gjewf3jnmSzPS3yTAdQdxbALtSPG6pkFHHIFgX2St2YijIKphcocswo
UVIvnELOCTP5peXbJc1XoN3jZ8S1slPrwwJYhdf/RxnZuuADJdGwg2c+Voe0Y34nk4g8EN1LhzXpql+88XMr4mIQo
ZA3ldaqAuVIsvRhD44u+/JynB98LDU/X0slFhlYNDxL2tWWynhdVPICxY0BQjtDYqazJvJywfL3+YWDDYxQtQC5d5
fEiukLs0apTgA0V/568++QDAv15PE9Cl63UwufbLEyJfH7QnaSga5b7/v7Ciyy6DPrIWV6eb4SwuVO/g9RB3QHgk4
GKMSupAQ=="
}

Access iOS User Guide·Create an applicati
on

> Document Version: 20231226 8

This section describes how to generate configurations based on the native plug-in extension
mechanism of CocoaPods to quickly integrate mPaaS.

Prerequisites
CocoaPods 1.0.0 or a later version has been installed. The project to be connected is the
CocoaPods project.
The CocoaPods mPaaS plug-in has been installed. If the plug-in has not been installed, run
the following command to install it.

sh <(curl -s http://mpaas-ios.oss-cn-
hangzhou.aliyuncs.com/cocoapods/installmPaaSCocoaPodsPlugin.sh)

An application has been created in the console, and the .config configuration file has
been downloaded. For more information, see Create an application in the console.

Procedure
1. Copy the .config configuration file to the root directory (at the same level with

 Podfile) of the project.

Note
Please ensure the .config file’s filename is ending with iOS. If it is ending with ios, it
needs to be updated to iOS manually.

2. Run the pod mpaas init command to automatically process the Podfile file and add
 plugin , source , and mPaaS_baseline configurations. The code for automatic
configuration is as follows:

 plugin "cocoapods-mPaaS"
 source 'https://gitee.com/mpaas/podspecs.git'
 mPaaS_baseline 'x.x.x'

3. Configure the Podfile file.
i. Modify mPaaS_baseline to specify the mPaaS baseline.

For example, in mPaaS_baseline '10.2.3' , 10.2.3 is the baseline version. For version
differences, see Release Note.

ii. Use mPaaS_pod to add mPaaS component dependencies.
For example, in mPaaS_pod "mPaaS_Nebula" , mPaaS_Nebula is a component name. The
following table shows more component names.

Component Configuration Applicable Baseline Description

3.Integrate by using
CocoaPods based on the
existing project

Access iOS
User Guide·Integrate by using
CocoaPods based on the existi

ng project

> Document Version: 20231226 9

https://cocoapods.org/
https://cocoapods.org/

mPaaS_pod
"mPaaS_LocalLog" 10.1.32+ Local log.

mPaaS_pod "mPaaS_Log" 10.1.32+
Mobile analysis: behavior log,
automation log, Crash log,
and performance log analysis.

mPaaS_pod
"mPaaS_Diagnosis" 10.1.32+ Diagnosis: Client diagnosis

and analysis.

mPaaS_pod "mPaaS_RPC" 10.1.32+
Mobile gateway: provides
download, upload, RPC call
and other functions.

mPaaS_pod "mPaaS_Sync" 10.1.32+ Mobile synchronization: long
connection service.

mPaaS_pod "mPaaS_Push" 10.1.32+ Message push.

mPaaS_pod "mPaaS_Config" 10.1.32+

Switch configuration: pull the
corresponding value from the
server based on the key to
dynamically control the client
logic.

mPaaS_pod "mPaaS_Upgrade" 10.1.32+

Upgrade release: provides
convenient service to
proactively detect and
upgrade, which can be used
for daily phased release and
online new version update
reminder.

mPaaS_pod "mPaaS_Share" 10.1.32+
Sharing: supports sharing text
and pictures to well-known
channels such as Weibo,
DingTalk, and Alipay friends.

mPaaS_pod "mPaaS_Nebula" 10.1.32+

HTML5 container and offline
package: Nebula container,
which supports interaction
between the front end and
the native.

mPaaS_pod "mPaaS_UTDID" 10.1.32+
Device ID: easily and quickly
obtained for the application to
find a specific device safely
and effectively.

Access iOS
User Guide·Integrate by using
CocoaPods based on the existi

ng project

> Document Version: 20231226 10

mPaaS_pod
"mPaaS_DataCenter" 10.1.32+

Unified storage: provides
secure, fast, encryptable KV
storage that supports multiple
data types. The database
DAO supports multiple
solutions for persistent data
storage.

mPaaS_pod
"mPaaS_ScanCode" 10.1.32+ Code scan: quickly identifies

QR codes and barcodes.

mPaaS_pod "mPaaS_LBS" 10.1.32+ Mobile positioning: positioning
solution for mobile clients.

mPaaS_pod
"mPaaS_CommonUI" 10.1.32+

Universal UI: universal UI
component library that
provides various UI
components.

mPaaS_pod
"mPaaS_BadgeService" 10.1.32+

Badge: badge reminder
component of the client,
which supports reminder
styles such as badge,
number, and New. It can
automatically manage the
badge relationship of a tree
structure.

mPaaS_pod
"mPaaS_AlipaySDK" 10.1.32+

Quick Pay function of Alipay:
quick payment platform of
Alipay.

mPaaS_pod
"mPaaS_Multimedia" 10.1.32+

Multimedia component:
supports image download,
upload, cache and other
functions.

mPaaS_pod
"mPaaS_MobileFramework" 10.1.32+

Mobile framework: client
application framework, sub-
app management, multi-tab
application management,
third-party redirection
management, viewController
redirection, and exception
handling and reporting.

mPaaS_pod
"mPaaS_OpenSSL" 10.1.32+ OpenSSL

mPaaS_pod "mPaaS_TinyApp" 10.1.32+ Applets: integrates lease
capabilities.

Access iOS
User Guide·Integrate by using
CocoaPods based on the existi

ng project

> Document Version: 20231226 11

mPaaS_pod "MPBaseTest" 10.1.32+ Basic test: basic test module.

mPaaS_pod "mPaaS_CDP" 10.1.32+

Intelligent delivery: configure
various intelligent
advertisements and
presentations to the clients
with dynamic launches.

mPaaS_pod
"mPaaS_AliAccount" 10.1.60+ Mini program: publish the

mini program

mPaaS_pod "mPaaS_ARTVC" 10.1.68

Voice call and video call:
Voice call and video call
components. This feature
supports two-party video
calls, group video calls and
online conferences.

mPaaS_pod
"mPaaS_BlueShield"

10.2.3+

Blue Shield encryption
component: Add the
absBase64Code parameter in
the config file to
automatically generate a Blue
Shield image.

mPaaS_pod "mPaaS_MDC" 10.2.3+
Mobile Dispatch component:
Fine-grained domain name
strategic scheduling.

See the following example of complete Podfile:

4. Execute pod mpaas update x.x.x in the command line, x.x.x is the version number of
configured baseline, such as 10.2.3 .

5. Execute pod install to complete integration. You can also add --verbose to view log
details.

Access iOS
User Guide·Integrate by using
CocoaPods based on the existi

ng project

> Document Version: 20231226 12

Note
If you are prompted when you execute pod install that you cannot find the library
imported from GitHub’s official website, specify the source address for the official
GitHub Source at the beginning of podfile: https://github.com/CocoaPods/Specs.git .

6. If you find the third-party library conflicts after accessing it, you can remove the specific
third-party library. For the specific operation, see iOS conflict processing.

Upgrading instructions
When a new version of mPaaS is published, you can select the upgrading components, or the
general upgrading baseline (namely SDK version).

Upgrading components
1. When you execute pod mpaas update x.x.x in the command line, x.x.x is the baseline

version number currently in use, such as 10.2.3 .

2. Execute pod install to complete upgrading for the corresponding components under
this baseline.

Upgrade the baseline
1. In podfile , modify the corresponding baseline number of mPaaS_baseline to complete

upgrading for the general baseline. For example, you can modify the baseline number from
 10.1.68 to 10.2.3 . The baseline number supports the standard or custom baseline.

Access iOS
User Guide·Integrate by using
CocoaPods based on the existi

ng project

> Document Version: 20231226 13

2. Execute pod install to complete baseline upgrading.

mPaaS iOS podspec address switch
Background
The original podspec storage warehouse code.aliyun.com used by mPaaS has ceased
service (updates will cease on June 1, 2023, and services will cease on June 30, 2023).
Continuing to use the original repo will have the following impacts:

1. When using the mPaaS pod plugin for SDK update, the latest version of each baseline
cannot be pulled;

2. After 2023.06.30, using the mPaaS pod plugin cannot pull to any baseline version.
Currently mPaaS has supported all mPaaS versions on gitee.com .

Solutions
Upgrade mPaaS pod plugin
Execute the following command to update to the latest mPaaS pod plugin.

sh <(curl -s http://mpaas-ios.oss-cn-
hangzhou.aliyuncs.com/cocoapods/installmPaaSCocoaPodsPlugin.sh)

After the execution is complete, execute the pod plugins installed command in the
terminal to check the version of cocoapods-mPaaS. If it shows 0.9.6 or above, the upgrade
is successful.

Access iOS
User Guide·Integrate by using
CocoaPods based on the existi

ng project

> Document Version: 20231226 14

Modify the source configuration in podfile
Replace the origin source "https://code.aliyun.com/mpaas-public/podspecs.git" in podfile
with
 source "https://gitee.com/mpaas/podspecs.git" .

API change
This modification only involves the change of the plugin, and there is no change in the use of
plugin commands.

Test validation
After completing the above upgrade and modification configuration operations, you can
continue to execute the mPaaS pod plugin related pull command to test whether the latest
baseline version and SDK can be pulled.

Parameter list
You can change some default behaviors of the plug-in by configuring parameters.
Usage:
Add parameters in the back end of the plugin "cocoapods-mPaaS" . See the following
examples:

Parameters Function Applicable versions

 :guard_image_version =>
6 Generate V6 guard image ≥ V0.9.6

 :guard_image_version =>
5 Generate V5 guard image ≥ V0.9.6

Access iOS
User Guide·Integrate by using
CocoaPods based on the existi

ng project

> Document Version: 20231226 15

 :only_frameworks =>
true

In some scenarios (such as the
independent framework
project), you do not need to
add directory files with mPaaS
template.

≥ V0.9.5.0.0.2

 :check_repo => false
In some cases (such as using
an intranet proxy), the default
added repo is not automatically
checked.

≥ V0.9.5.0.0.2

Note
10.2.3 The baseline version does not need to set :guard_image_version , and generates
V6 images by default.

Command list
After installing the cocoapods-mPaaS plug-in, you can use command line tools to assist your
development.

Command Function

 pod mpaas init In Podfile , add plugin , source and
 mPaaS_baseline .

 pod mpaas update <VERSION>
Upgrade the baseline. The parameter
 <VERSION> is the specific baseline number

such as 10.2.3. Then upgrade the podspec
library.

 pod mpaas update --all

In the official version of the plug-in, this
command will upgrade the plug-in, and run the
installation script again.
In the beta version of the plug-in, this command
will implement features of the official version,
and upgrade the local baseline.

 pod mpaas info Show the complete information of the baseline
and the corresponding component.

 pod mpaas info <NAME> <VERSION>

, in which <VERSION> is optional.
Filter the information about a module name.

 pod mpaas info --only-mPaaS Show some default baseline information, which is
easy to be pasted to Podfile.

Access iOS
User Guide·Integrate by using
CocoaPods based on the existi

ng project

> Document Version: 20231226 16

 pod mpaas open Directly open the . xcworkspace file from the
command line.

 pod mpaas version Show the complete baseline used in the current
project.

 pod mpaas version --plugin Show the version number of the current
cocoapods-mPaaS plug-in.

Access iOS
User Guide·Integrate by using
CocoaPods based on the existi

ng project

> Document Version: 20231226 17

After importing the cloud data to a mPaaS-iOS-framework-based project or a native-
framework-based project, the following directory is added to the project directory.

Note
In versions 10.1.32 and above, among all the directories under MPaaS > Targets >
mPaaSDemo, only APMobileFramework and mPaas are kept. If you upgrade from an
earlier version, the directories and categories of the other components will no longer be
generated.

Directory structure is as follows:

└── MPaaS
 ├── mpaas_sdk.config
 ├── Targets
 | └── mPaaSDemo (Project Target name)
 | ├── mPaaSDemo-mPaaS-Headers.h
 | ├── mPaaSDemo-Prefix.pch
 | ├── APMobileFramework
 | ├── mPaas
 | ├── meta.config
 | └── yw_1222.jpg
 ├── Resources
 └── Frameworks

In the above directory:
 mpaas_sdk.config : Information about the modules added in the current project, including
version, added time, resource file, and so on, which are automatically maintained by the
mPaaS plugin. Do not modify it manually.
 mPaaSDemo-mPaaS-Headers.h : Header file of the mPaaS module that the current project
depends on, which is automatically maintained by the mPaaS plugin. Do not modify it
manually.
 mPaaSDemo-Prefix.pch : The reference of pch file, automatically adding mPaaSdemo-mPaaS-
Headers.h into the mPaaS module’s header file.
 APMobileFramework : The category managed by the lifecycle of mPaaS framework.
 mPaas : The category of MPaaSInterface .
 meta.config : The cloud metadata downloaded from mPaaS console.
 yw_1222.jpg : The security guard signature verification image generated through the
base64code field in the metadata, used in mobile gateway signature verification. You can
delete this image if you don’t need mobile gateway.
 Resources & Frameworks : The mPaaS module’s resource file and binary file directory,
serving as the union of mPaaS modules used by all Targets in the current project. They are
automatically maintained by the mPaaS plugin. Do not modify it manually.

4.Advanced guide
4.1. mPaaS directory structure

Access iOS User Guide·Advanced guide

> Document Version: 20231226 18

Note
Since all Targets share the same Resources & Frameworks , different Targets cannot use
different versions of the same module simultaneously. Do not modify these two
directories. The framework added to Build Phase varies by the module selected by
each Target.

mPaaS iOS framework originates from the development framework of Alipay client. In line
with the design idea of Framework, mPaaS iOS isolates business into multiple relatively
independent modules and aims for achieving high cohesion and low coupling between
modules.
mPaaS iOS framework directly takes over the lifecycle of application, and responsible for Host
startup, managing application lifecycle, processing and distributing the delegate events of
 UIApplication , managing each business modules (MicroApplication and Services) in a
unified way, etc.
This article gives a detailed introduction to the mPaaS iOS framework.

Host startup
Through the replacement of the main function of the program, the lifecycle of the application
is directly taken over. The whole startup process is as follows:

main -> DFClientDelegate -> Open Launcher application

Application lifecycle management
After you access mPaaS framework, it completely replaces AppDelegate . The entire lifecycle
of the application is managed by the framework, but you can still implement the delegate
methods in different stages of the application’s lifecycle. The framework provides the access
method for all delegate methods in the UIApplicationDelegate , you only need to override
the corresponding method in Category .
The life cycle method is declared as follows (see DTFrameworkInterface.h file for more
information):

/**
 * The framework needs to implement certain initialization logic in
didFinishLaunching, but this method will be called before execution.
 */
- (void)application:(UIApplication *)application beforeDidFinishLaunchingWithOptions:(N
SDictionary *)launchOptions;

/**
 * The framework calls back this method, making the accessed application taking over i
ts own didFinishLaunching logic.
 * When DTFrameworkCallbackResultReturnYES or DTFrameworkCallbackResultReturnNO is ret
urned, they are directly returned to the system, without executing the subsequent logic
.
 * This method is called back before starting BootLoader, application can make the fra
mework exit in advance by returning DTFrameworkCallbackResultReturnYES or
DTFrameworkCallbackResultReturnNO, without running the default BootLoader.
 * Use the default implementation in the framework, override is normally not required.

4.2. mPaaS iOS framework

Access iOS User Guide·Advanced guide

> Document Version: 20231226 19

 *
 * @return : To continue run the framework, or return YES/NO to the system.
 */
- (DTFrameworkCallbackResult)application:(UIApplication *)application
handleDidFinishLaunchingWithOptions:(NSDictionary *)launchOptions;

/**
 * The framework needs to implement certain initialization logic in
didFinishLaunching, but this method will be called after all the logics are done.
 */
- (void)application:(UIApplication *)application afterDidFinishLaunchingWithOptions:(NS
Dictionary *)launchOptions;

/**
 * The framework calls back this method in advance, allowing the accessed application
to process the notification message in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework broadcasts the me
ssage to global listeners through UIApplicationDidReceiveRemoteNotification, and calls
completionHandler(UIBackgroundFetchResultNoData).
 * When DTFrameworkCallbackResultReturn is returned, it means the accessed application
has completely processed the message, and the framework stops executing the subsequent
logic.
 */
- (DTFrameworkCallbackResult)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo fetchCompletionHandler:(void (^)(
UIBackgroundFetchResult result))completionHandler;

/**
 * The framework calls back this method in advance, allowing the accessed application
to process the notification message in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework broadcasts the me
ssage to global listeners through UIApplicationDidReceiveLocalNotification.
 * When DTFrameworkCallbackResultReturn is returned, it means the accessed application
has completely processed the message, and the framework stops executing the subsequent
logic.
 */
- (DTFrameworkCallbackResult)application:(UIApplication *)application
didReceiveLocalNotification:(UILocalNotification *)notification;

/**
 * The framework calls back this method in advance, allowing the accessed application
to process the notification message in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework broadcasts the me
ssage to global listeners through UIApplicationDidReceiveLocalNotification, and calls c
ompletionHandler().
 * When DTFrameworkCallbackResultReturn is returned, it means the accessed application
has completely processed the message, and the framework stops executing the subsequent
logic.
 */
- (DTFrameworkCallbackResult)application:(UIApplication *)application
handleActionWithIdentifier:(NSString *)identifier forLocalNotification:
(UILocalNotification *)notification completionHandler:(void (^)())completionHandler;

/**
 * The framework calls back this method in advance, allowing the accessed application

Access iOS User Guide·Advanced guide

> Document Version: 20231226 20

 * The framework calls back this method in advance, allowing the accessed application
to get deviceToken.
 * When DTFrameworkCallbackResultContinue is returned, the framework broadcasts the me
ssage to global listeners through UIApplicationDidRegisterForRemoteNotifications.
 * When DTFrameworkCallbackResultReturn is returned, it means the accessed application
has completely processed, and the framework stops executing the subsequent logic.
 */
- (DTFrameworkCallbackResult)application:(UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken;

/**
 * The framework calls back this method in advance when it fails to obtain
deviceToken.
 * When DTFrameworkCallbackResultContinue is returned, the framework continues to exec
ute, no other logic currently.
 * When DTFrameworkCallbackResultReturn is returned, the framework stops executing the
subsequent logic, no other logic currently.
 */
- (DTFrameworkCallbackResult)application:(UIApplication *)application
didFailToRegisterForRemoteNotificationsWithError:(NSError *)error;

/**
 * The framework notifies sharing component (if there is, and
shouldAutoactivateShareKit returns YES) in advance, if the sharing component cannot pro
cess it, this method is called back to allow the accessed application to process openUR
L.
 * When DTFrameworkCallbackResultReturnYES or DTFrameworkCallbackResultReturnNO is ret
urned, the framework directly returns to the system, without executing the subsequent l
ogic.
 * When DTFrameworkCallbackResultContinue is returned, the framework continues to proc
ess the URL, and distribute it to SchemeHandler and other classes for further processin
g.
 *
 * Comparing with the system method, this method has an additional newURL parameter, a
llowing the application to return a different URL after processing. If the function ret
urns DTFrameworkCallbackResultContinue and assign value to newURL, the framework will u
se the new URL for subsequent processing.
 */
- (DTFrameworkCallbackResult)application:(UIApplication *)application openURL:(NSURL *)
url newURL:(NSURL **)newURL sourceApplication:(NSString *)sourceApplication annotation:
(id)annotation;

/**
 * The framework calls back this method in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework continues to exec
ute, no other logic currently.
 * When DTFrameworkCallbackResultReturn is returned, the framework stops executing the
subsequent logic, no other logic currently.
 */
- (DTFrameworkCallbackResult)applicationWillResignActive:(UIApplication *)application;

/**
 * The framework calls back this method in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework continues to exec
ute, no other logic currently.

Access iOS User Guide·Advanced guide

> Document Version: 20231226 21

ute, no other logic currently.
 * When DTFrameworkCallbackResultReturn is returned, the framework stops executing the
subsequent logic, no other logic currently.
 */
- (DTFrameworkCallbackResult)applicationDidEnterBackground:(UIApplication
*)application;

/**
 * The framework calls back this method in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework continues to exec
ute, no other logic currently.
 * When DTFrameworkCallbackResultReturn is returned, the framework stops executing the
subsequent logic, no other logic currently.
 */
- (DTFrameworkCallbackResult)applicationWillEnterForeground:(UIApplication
*)application;

/**
 * The framework calls back this method in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework continues to exec
ute and give event to sharing component (if there is, and shouldAutoactivateShareKit re
turns YES). If the entire application is not loaded, BootLoader is called.
 * When DTFrameworkCallbackResultReturn is returned, the framework stops executing the
subsequent logic, no other logic currently.
 */
- (DTFrameworkCallbackResult)applicationDidBecomeActive:(UIApplication *)application;

/**
 * The framework calls back this method in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework continues to exec
ute, no other logic currently.
 * When DTFrameworkCallbackResultReturn is returned, the framework stops executing the
subsequent logic, no other logic currently.
 */
- (DTFrameworkCallbackResult)applicationWillTerminate:(UIApplication *)application;

/**
 * The framework calls back this method in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework continues to exec
ute, no other logic currently.
 * When DTFrameworkCallbackResultReturn is returned, the framework stops executing the
subsequent logic, no other logic currently.
 */
- (DTFrameworkCallbackResult)applicationDidReceiveMemoryWarning:(UIApplication *)applic
ation;

/**
 * The framework calls back this method in advance, allowing the accessed application
to process the Watch message in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework broadcasts the Wa
tch message to global listeners through
UIApplicationWatchKitExtensionRequestNotifications.
 * When DTFrameworkCallbackResultReturn is returned, it means the accessed application
has completely processed the message, and the framework stops executing the subsequent
logic.

Access iOS User Guide·Advanced guide

> Document Version: 20231226 22

logic.
 */
- (DTFrameworkCallbackResult)application:(UIApplication *)application
handleWatchKitExtensionRequest:(NSDictionary *)userInfo reply:(void(^)(NSDictionary *re
plyInfo))reply;

/**
 * The framework calls back this method in advance, allowing the accessed application
to process the message in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework broadcasts the me
ssage to global listeners through UIApplicationUserActivityNotifications, and returns N
O to the system in the end.
 * When DTFrameworkCallbackResultReturnYES or DTFrameworkCallbackResultReturnNO is ret
urned, the framework directly returns to the system, without executing the subsequent l
ogic.
 */
- (DTFrameworkCallbackResult)application:(UIApplication *)application
continueUserActivity:(NSUserActivity *)userActivity restorationHandler:(void(^)(NSArray
*restorableObjects))restorationHandler;

/**
 * The framework calls back this method in advance, allowing the accessed application
to process the message of 3D Touch quick entry in advance.
 * When DTFrameworkCallbackResultContinue is returned, the framework processes the URL
brought by shortcutItem, and calls completionHandler() to return whether it has been pr
ocessed.
 * When DTFrameworkCallbackResultReturn is returned, the framework directly returns to
the system, without executing the subsequent logic.
 */
- (DTFrameworkCallbackResult)application:(UIApplication *)application
performActionForShortcutItem:(UIApplicationShortcutItem *)shortcutItem
completionHandler:(void (^)(BOOL))completionHandler;

/**
 * Background Fetch mechanism callback
 * completionHandler must be called back in 30 seconds, otherwise the process will be
terminated.
 * To enable this mechanism, you need to configure the fetch option of Background Mode
s, and then call the following method in didFinishLaunching. See documentation for more
information.
 * [application
setMinimumBackgroundFetchInterval:UIApplicationBackgroundFetchIntervalMinimum];
 * The default implementation is null, you need to process it in your own way.
 */
- (void)application:(UIApplication *)application performFetchWithCompletionHandler:(voi
d (^)(UIBackgroundFetchResult))completionHandler;

Division of application modules
mPaaS framework has defined MicroApplication and Service to separate different modules.
Take “whether it has an UI interface” as criteria, the Framework classifies different modules
into MicroApplication and Service and implements lifecycle management on the modules
via Context.

Access iOS User Guide·Advanced guide

> Document Version: 20231226 23

Terminology Definition

MicroApplication A micro application with UI on client at runtime

Service Lightweight abstracted service provided by client
at runtime

Context Context of client micro-component at runtime

This section introduces the concepts of micro application, service, and context. See Create a
micro application for more information.

MicroApplication
In the process of developing application based on mPaaS iOS framework, we generally set the
independent service with UI as a micro application (e.g.: transfer, mobile top-up and other
services in Alipay) and isolate it from other services to achieve high independence and zero
interdependence among micro applications.
Each micro application has its own lifecycle. The overall process is as follows:

The callback methods of micro application through the whole lifecycle (see
 DTMicroApplicationDelegate.h file for more information):

@required
/**

Access iOS User Guide·Advanced guide

> Document Version: 20231226 24

/**
* Request the delegate of application object to return root view controller.
*
* @param application: Application object.
*
* @return: The root view controller of application.
*/
- (UIViewController *)rootControllerInApplication:(DTMicroApplication *)application;
@optional
/**
* Notify the application delegate that the application object has been instantiated.
*
* @param application: Application object.
*/
- (void)applicationDidCreate:(DTMicroApplication *)application;
/**
* Notify the application delegate that the application will be launched.
*
* @param application: Launched application object.
* @param options: Running parameters of the application.
*/
- (void)application:(DTMicroApplication *)application willStartLaunchingWithOptions:(NS
Dictionary *)options;
/**
* Notify the application delegate that the application is launched already.
*
* @param application: Launched application object.
*/
- (void)applicationDidFinishLaunching:(DTMicroApplication *)application;
/**
* Notify the application delegate that the application will be paused and put into back
ground.
*
* @param application: Launched application object.
*/
- (void)applicationWillPause:(DTMicroApplication *)application;
/**
* Notify the application delegate that the application will be reactivated.
*
* @param application: The application object to be activated.
*/
- (void)application:(DTMicroApplication *)application willResumeWithOptions:
(NSDictionary *)options;
/**
* Notify the application delegate that the application has been activated.
*
* @param application: The application object to be activated.
*/
- (void)applicationDidResume:(DTMicroApplication *)application;
/**
* Notify the application delegate that the application has been activated.
*
* @param application: The application object to be activated, together with parameter v
ersion.
*/

Access iOS User Guide·Advanced guide

> Document Version: 20231226 25

*/
- (void)application:(DTMicroApplication *)application didResumeWithOptions:
(NSDictionary *)options;
/**
* Notify the application delegate that the application will quit.
*
* @param application: Application object.
*/
- (void)applicationWillTerminate:(DTMicroApplication *)application;
/**
* Notify the application delegate that the application will quit.
*
* @param application: Application object.
* @param animated: Whether to quit in animated way.
*/
- (void)applicationWillTerminate:(DTMicroApplication *)application animated:
(BOOL)animated;
/**
* Inquire the application delegate whether the application can quit or not.
* Note: The delegate returns **NO** in some special cases. If it defaults to **Yes**, t
he application can quit.
*
* @param application: Application object.
*
* @return: Whether the application can quit or not.
*/
- (BOOL)applicationShouldTerminate:(DTMicroApplication *)application;

Service
mPaaS iOS framework regards the Framework without UI as service. The differences between
microapplication and service are as follows:

Microapplication serves as an independent business process while service is used to
provide general service.
Service is stateful. Once started, the service exists through the whole lifecycle of the client
and can be acquired at any time; microapplication will be destroyed after exit.

Relevant interfaces of service management (see DTService.h file for more information):

Access iOS User Guide·Advanced guide

> Document Version: 20231226 26

@required
/**
* Start a service.
* Note:
* The framework will call the method after initialization.
* The service can start an application only when the method is called.
*/
- (void)start;
@optional
/**
* A service is created.
*/
- (void)didCreate;
/**
* The service will be destroyed.
*/
- (void)willDestroy;

Context
Context is the control center of the whole client framework, performing unified management
on the interaction and jumps among micro applications and services, with the following
responsibilities:

Provide an interface for starting micro application. Users can quickly find, close and
manage the jumps of the micro application through using name;
Provide an interface for starting service, managing the registration, discovery and
deregistration of services.

Manage micro application
Relevant interfaces of micro application management (see DTContext.h file for more
information):

Access iOS User Guide·Advanced guide

> Document Version: 20231226 27

/**
* Start an application as per the given name.
*
* @param name: Name of the application to be started.
* @param params: The parameters need to be forwarded to another application when an app
lication is started.
* @param animated: Specify whether to display animation when starting an application.
*
* @return: Return YES if the application is successfully started, otherwise NO.
*/
- (BOOL)startApplication:(NSString *)name params:(NSDictionary *)params animated:(BOOL)
animated;
/**
* Start an application as per the given name.
*
* @param name: Name of the application to be started.
* @param params: The parameters need to be forwarded to another application when an app
lication is started.
* @param launchMode: Specify the method of starting application.
*
* @return: Return YES if the application is successfully started, otherwise NO.
*/
- (BOOL)startApplication:(NSString *)name params:(NSDictionary *)params launchMode:(DTM
icroApplicationLaunchMode)launchMode;
/**
* Find the specified application.
*
* @param name: Name of the application to find.
*
* @return: Return corresponding application object if the specified application is in t
he application stack, otherwise nil.
*/
- (DTMicroApplication *)findApplicationByName:(NSString *)name;
/**
* Return the application which is on the top of the stack currently, namely the applica
tion visible to users.
*
* @return: Current visible applications.
*/
- (DTMicroApplication *)currentApplication;

Micro application starting process:

Access iOS User Guide·Advanced guide

> Document Version: 20231226 28

Service management
Relevant interfaces of service management (see DTContext.h file for more information):

/**
* Find a service as per the given name.
*
* @param name: Service name
*
* @return: Return a service object if the service with given name is found, otherwise n
ull.
*/
- (id)findServiceByName:(NSString *)name;

/**
* Register a service.
*
* @param name: Service name
*/
- (BOOL)registerService:(id)service forName:(NSString *)name;

/**
* Deregister an existing service.
*
* @param name: Service name
*/
- (void)unregisterServiceForName:(NSString *)name;

Service starting process:

Access iOS User Guide·Advanced guide

> Document Version: 20231226 29

The UML class diagram illustrating how context manages micro application and service is
shown below:

Access iOS User Guide·Advanced guide

> Document Version: 20231226 30

In the process of developing apps based on the mPaaS iOS framework, the independent
service with a UI is often configured as a micro application (such as transfer in Alipay and
recharging for mobile phones), which is isolated from other services and implements its own
service logic in In the process of developing applications based on the mPaaS iOS framework,
the independent business with UI interface is generally set as a micro application (such as
transfer in Alipay, mobile phone recharge, etc.), which is isolated from other services and
implements its own service logic in the micro application. To add a micro application, you
must add micro-application template code and register the micro application.

Sample code
Visit iOS framework-demo to download the sample code of the iOS mobile framework.

Procedure
1. Add micro-application template code.

1. Create a micro-application delegation class and implement the delegation method of the
micro-application manager of the mPaaS iOS framework, DTMicroApplicationDelegate .

2. Create rootViewcontroller for the micro application, which can inherit the
 DTViewController base class provided by the mPaaS iOS framework.

4.3. mPaaS Micro Applications and
Services
4.3.1. Create a micro application

Access iOS User Guide·Advanced guide

> Document Version: 20231226 31

https://github.com/mpaas-demo/ios-framework

3. Specify rootViewcontroller for the micro application. You can perform service actions in
the lifecycle of the micro application by using its delegation method.

2. Register the micro application.
You can manage the created micro application with the framework only after registering the
micro application in MobileRuntime.plist .

Access iOS User Guide·Advanced guide

> Document Version: 20231226 32

Field Description

Delegate
The class name of
 DTMicroApplicationDelegate for application

implementation.

Description The description of the application.

Name The name of the application. The framework
context finds the application by this name.

In the process of developing an application based on mPaaS iOS framework, you can set the
general functions without UI as a service (e.g. login) which can be easily obtained by other
micro applications or services through the whole App running period. To add a service, you
must add service template codes, and register a service.

Procedure
1. Add service template codes.

4.3.2. Create a service

Access iOS User Guide·Advanced guide

> Document Version: 20231226 33

i. Define the service’s protocol and expose the external
interface method.

ii. Define the class to implement the service interface method.

2. Register a service.

Access iOS User Guide·Advanced guide

> Document Version: 20231226 34

Similar to the micro application, the newly created services
can be managed in a unified way via the framework only
when they are registered in MobileRuntime.plist .

Field Description

Name The unique identifier of a service.

Class
The implementation class of service. When creating a service, the
framework utilizes a run-time reflection mechanism to create the
instances of the service implementation class.

lazyLoading

Whether to delay loading. If Yes, the service will not be
instantiated when the framework starts. Only when being used
can the service be instantiated and launched. If No, the service
will be instantiated and launched when the framework starts. It
defaults to No.

After dividing the business into micro application and service, you will not only achieve high
cohesion and low coupling among modules, but also can manage micro application and
service by virtue of the context provided by mPaaS iOS framework, including micro
application-to-micro application, service-to-service and micro application-to-service jumping
and data transmission.

Manage micro applications
Framework context manages the jumps of all micro applications in a unified way through
stack, and in compliance with the following rules:

4.3.3. Manage the micro application and
service

Access iOS User Guide·Advanced guide

> Document Version: 20231226 35

Based on mPaaS iOS framework, you can quickly find a micro application by using its
 name and start another micro application in the current micro application.

 - (void)pushSubApp2
 {

 [DTContextGet() startApplication:@"20000002" params:@{}
launchMode:kDTMicroApplicationLaunchModePushWithAnimation];
 }

The upper-level micro application in the stack can quickly jump to the root application at
the bottom.

 - (void)exitToLauncher
 {
 //Since Launcher is at lower-level, starting Launcher means exiting from all up
per-level applications and back to Launcher
 [DTContextGet() startApplication:@"Launcher" params:nil
animated:kDTMicroApplicationLaunchModePushNoAnimation];
 }

Quickly exit from the current micro application.

 - (void)exitSelf
 {
 [[DTContextGet() currentApplication] exitAnimated:YES];
 }

Quickly exit from the started micro application.

 - (void)exitApp2
 {
 // If current top-level application is app3, it is workable to force app2 and i
ts windows to exit.
 [[DTContextGet() findApplicationByName:@"20000002"] forceExit];
 }

Manage services
Based on mPaaS iOS framework, you can quickly start another service in the current micro
application.

Access iOS User Guide·Advanced guide

> Document Version: 20231226 36

- (void)findService
{
 id<DemoService> service = [DTContextGet() findServiceByName:@"DemoService"];
 [service doTask];
}

The Demo introduces the hierarchical relations among mPaaS micro applications. For more
information about iOS framework, see mPaaS iOS framework.

Download codes
Please refer to Get code sample and download the Demo codes locally.
 git clone git@git.cloud.alipay.com:mPaaS-Demos/FrameworkDemo.git

Micro application hierarchy demonstration
Click Push app to start MicroApp 1;

Click Push app 2 to start MicroApp 2;

4.3.4. Code sample of micro application

Access iOS User Guide·Advanced guide

> Document Version: 20231226 37

Click Push app 3 to start MicroApp 3;

Access iOS User Guide·Advanced guide

> Document Version: 20231226 38

If app 3 is on the top, click Exit app 2 to force app 2 and its windows to exit;
If app 3 is on the top, click Exit self to exit app 3 itself and back to app 2;
If app 3 is on the top, click Exit to launcher to back to the root application and force app 1,
app2, and app 3 to exit;
Meanwhile, you can start a service in the micro application of Launcher.

Access iOS User Guide·Advanced guide

> Document Version: 20231226 39

It will introduce the method of setting language in the process of integrating mPaaS into iOS
client.
When integrating with an iOS project, you can configure language settings for your iOS app.

Use the system language by default
1. You can add Languages.bundle.zip to your project to configure languages supported by the

current app.
2. When the app is successfully launched, initialize the multilingual framework

//#import <mPaas/APLanguage.h>.
[APLanguageSetting sharedSetting];

Obtain the current app language
You can obtain the current app language by using the following command:

NSString *currentLanguage = [APLanguageSetting currentLanguage].name;

4.4. iOS language settings

Access iOS User Guide·Advanced guide

> Document Version: 20231226 40

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/207593/AntCloud_zh/1615779463581/Languages.bundle.zip

Modify the current app language
In the Languages.bundle file of the project, you can view the language currently supported
by the app : You can modify the current app language by using the following command:

[APLanguageSetting setCurrentLanguageWithName:@"en"];

Support multilingual copywriting
1. Add multilingual bundle files.

i. Add the strings files corresponding to the languages currently supported by the app.
ii. Set the path that stores the multilingual files:

[[APLanguageBundleLoader sharedLoader] setCustomLanguagesBundlePath:@""];

2. Define text strings in strings files.
The implementation principle of strings files is as follows:

The format of each text string in a strings file is as follows: The left side of the equal sign
is the key of a text string while the expression on the right side is the content to be
displayed in the corresponding language.
For example : "BeeCityPicker : City Choice" = “City Choice” .
For the same text string, its key must be the same in all strings file. We recommend that
you use a combination of the bundle name and the text string in Chinese as the key.
For example : "BeeCityPicker : City Choice" .

3. Configure the text strings.
For text strings that need to be provided in multiple languages, do not use hardcoded
expressions. You can use the __Text macro. For example:

self.navigationItem.title = __TEXT(@"BeeCityPicker",@"BeeCityPicker:City Selection",
@"City Selection");

 @"BeeCityPicker" : The bundle name of a text string in a strings file. Generally, it is
the name of a module resource bundle.
 @"BeeCityPicker:City selection" : The key of a text string in a strings file.
 @"City selection" : The content to be returned by default when the text string
corresponding to a specified key cannot be found in the strings files.

This article introduces the method of user-defined city selection in the process of integrating
mPaaS into iOS client.
When integrating with an iOS project, you can customize the city selection.

Note
This function is valid only in the baseline versions 10.1.68.27 and later.

Customize the city file
All cities

4.5. Customize the city selection

Access iOS User Guide·Advanced guide

> Document Version: 20231226 41

1. Create a city file with an extension of .txt . The file content format is as follows:
Field 1: adcode.
Field 2: City name.
Field 3: City name in Chinese Pinyin. This field is used to configure the first letter on the
right.

2. Set the path that stores the custom city file. The custom city file is saved under the path of
the bundle file, for example, BeeCityPicker.bundle/citiesWithCounty.text . The SDK will
automatically read the file name:

[BeeCityPickerAdapter sharedInstance].customHotCityTextFile =
@"BeeCityPicker.bundle/citiesWithCounty.text";

Popular cities
1. Create a popular city file. The file content is same as the city file created in All cities.
2. Set the path that stores the custom popular city file.

[BeeCityPickerAdapter sharedInstance].customHotCityTextFile =
@"BeeCityPicker.bundle/hotCities.text";

Customize cities in a mini program
For details about how to customize cities in a mini program, see Select cities.

Access iOS User Guide·Advanced guide

> Document Version: 20231226 42

mPaaS 10.1.68 release notes
1. Starting from the 10.1.68 baseline, UIWebView has been officially discarded, and only

WKWebView is supported. For details, see mPaaS is adapted to WKWebView. App Store will
no longer accept new apps that use UIWebView from April 2020, and will no longer accept
updates to apps that use UIWebview from December 2020. Upgrade to the 10.1.68 baseline
as soon as possible to adapt to WKWebView.

2. Xcode 11 is supported to build static library packages and is fully compatible with Xcode 11
development.

mPaaS 10.1.68 upgrade instructions
Use CocoaPods for upgrade
Prerequisites
The CocoaPods mPaaS plug-in has been installed.

If you have not installed the CocoaPods mPaaS plug-in, execute the following script on the
terminal to install the plug-in.

 sh <(curl -s http://mpaas-ios.oss-cn-
hangzhou.aliyuncs.com/cocoapods/installmPaaSCocoaPodsPlugin.sh)

If you have installed the CocoaPods mPaaS plug-in, directly run the upgrade command pod
mpaas update --all to upgrade the plug-in. For details about using the CocoaPods mPaaS
plug-in, see Use CocoaPods for access based on the native framework.

Procedure
1. Change the SDK version to 10.1.68 in Podfile.

2. Run the command pod mpaas update 10.1.68 to install the latest SDK of version 10.1.68
for the baseline.

3. Run the pod install or pod update command as needed to upgrade the SDK to
version 10.1.68 in the project.

Follow-up steps
If you encounter the following error when accessing CocoaPods:

Invalid `Podfile` file: [!] No mPaaS_Nebula : 10.1.68 found !!! Check name & version in
Podfile.

5.Adaption to iOS
5.1. Upgrade guide of mPaaS
10.1.68

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 43

Try this solution:
1. Run the command gem list | grep 'mPaaS' to view the CocoaPods plug-in version, as

shown in the following figure.

2. If the CocoaPods plug-in version is earlier than 0.9.5, execute the following script to
reinstall the plug-in.

sh <(curl -s http://mpaas-ios.oss-cn-
hangzhou.aliyuncs.com/cocoapods/installmPaaSCocoaPodsPlugin.sh)

Component usage and upgrade instructions
If your current baseline version is earlier than 10.1.60 and integrates the HTML5 container
and mini program components, read the following instructions in detail.

Read HTML5 container upgrade guide for Version 10.1.60 for details about upgrading
HTML5 containers and offline packages.
Read Upgrade guide for mini program Version 10.1.60 for details about upgrading applets.

Component API changes
Starting from the 10.1.32 baseline, the mPaaS component adds an adaptation layer. If your
baseline is not using adaptation-layer APIs, read mPaaS 10.1.32 is adapted to iOS 13 first.
We recommend that you use the APIs of the adaptation layer after upgrading the SDK. For
details, see the following upgrade instructions for different components:

Mobile Gateway Service
Configure project
HTML5 Offline Packages
Mobile Sync Service
Client diagnosis
Publishing Management

Note
We strongly recommend that you modify the code and use middle-layer (adapter)
methods instead of directly using underlying methods, because certain underlying
methods may be modified or discarded in future versions. You may need to take lots of
time adapting them in future updates if you continue to use them.

Handle custom libraries
The components of the 10.1.68 baseline incorporate customization requirements, However, if
you included custom libraries in your dependencies and upgraded the SDK from an earlier
version (such as 10.1.32) to version 10.1.68, you may need to customize the custom libraries
again based on the new version for security reasons. To do this, search for the group number
41708565 with DingTalk to join DingTalk group to ask.

The sharing component

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 44

Third-party SDKs in the sharing component of version 10.1.68 has been upgraded, including
the WeChat, Weibo, and QQ connection SDKs. Since the sharing of WeChat and QQ added the
Universal Link feature in the latest version, be sure to adapt to the new SDKs, including:

1. The application configuration information of the corresponding platform, which can be
viewed in app management (under the third-party developer account), is updated. For the
specific adaptation method, visit the reference link.

2. For WeChat sharing, the "universalLink" field must be added to the configuration
information of the mPaaS sharing component. The value of this field is the actual Universal
Link address.

Background
The regulatory authority requires that the app cannot call sensitive relevant APIs before the
user clicks the “Agree” button in the privacy agreement window. In order to meet this
regulatory requirement, the baseline for mPaaS iOS 10.1.60.27 and later (60-series versions)
and 10.1.32.18 and later (32-series versions) support this feature. You can modify your
project as needed by referring to this document.

Usage
Different usage methods are required depending on whether the mPaaS iOS framework is
allowed to host the lifecycle of the app. By checking whether DFApplication and
 DFClientDelegate are enabled for the framework in the main.m file of the project, you can
determine whether the mPaaS iOS framework is allowed to host the lifecycle of the app. If
 DFApplication and DFClientDelegate are enabled, the hosting is allowed.

return UIApplicationMain(argc, argv, @"DFApplication", @"DFClientDelegate"); // NOW USE
MPAAS FRAMEWORK

Host the lifecycle of the app by the framework
1. Allow privacy pop-up prompts.
In MPaaSInterface category , rewrite the enablePrivacyAuth API method and return
 YES .

5.2. Privacy permission

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 45

Sample code

```objectivec
@implementation MPaaSInterface (Portal)

- (BOOL)enablePrivacyAuth
{
return YES;
}

@end
```

2. Implement permission pop-up windows.
Rewrite the - (DTFrameworkCallbackResult)application:(UIApplication *)application
privacyAuthDidFinishLaunchingWithOptions:(NSDictionary *)launchOptions completionHandler:
(**void** (^)(**void**))completionHandler; method provided by the framework.

Sample code

```objectivec
- (DTFrameworkCallbackResult)application:(UIApplication *)application 
privacyAuthDidFinishLaunchingWithOptions:(NSDictionary *)launchOptions 
completionHandler:(void (^)(void))completionHandler
{
UIWindow *authWindow = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
authWindow.backgroundColor = [UIColor redColor];
authWindow.windowLevel = UIWindowLevelStatusBar+5;
AuthViewController *vc = [[AuthViewController alloc] init];
vc.completionHandler = completionHandler;
vc.window = authWindow;
authWindow.rootViewController = vc;
[authWindow makeKeyAndVisible];

return DTFrameworkCallbackResultContinue;
}
```

3. Start the mPaaS framework.
After the user clicks Agree for authorization, call back completionHandler to continue to
start the mPaaS framework. The sample code is as follows:

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 46

#import <UIKit/UIKit.h>

NS_ASSUME_NONNULL_BEGIN

@interface AuthViewController : UIViewController

@property (nonatomic, copy) void (^completionHandler)(void);
@property (nonatomic, strong) UIWindow *window;

@end

NS_ASSUME_NONNULL_END

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 47

#import "AuthViewController.h"

@interface AuthViewController ()<UIAlertViewDelegate>

@end

@implementation AuthViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after loading the view.

 [self showAlertWithTitle:@"Privacy permissions"];
}

- (void)showAlertWithTitle:(NSString *)title
{
 if ([title length] > 0) {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:title
 message:nil
 delegate:self
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"OK", nil];
 [self.window makeKeyWindow];
 [alert show];
 }
}

- (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if (buttonIndex == 1) {
 if (self.completionHandler) {
 self.completionHandler();
 self.window.rootViewController = nil;
 self.window = nil;
 }
 }else {
 exit(0);
 }
}

@end

4. Manually initialize container Context.
If you have integrated the HTML5 container, offline package, and mini program components,
you must manually initialize container Context in the - (void)application:(UIApplication
*)application afterDidFinishLaunchingWithOptions:(NSDictionary *)launchOptions method.
The code sample is as follows:

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 48

- (void)application:(UIApplication *)application afterDidFinishLaunchingWithOptions:(NS
Dictionary *)launchOptions
{
 ...
 // Initialize container Context.
 [MPNebulaAdapterInterface setNBContextWhenEnablePrivacyAuth];

 ...
}

Host the lifecycle of the app not by the framework
1. Support privacy pop-up windows.
In MPaaSInterface category , rewrite the enableUserOverWriteAuthAlert API method and
return the corresponding privacy permission status.

Sample code

@implementation MPaaSInterface (mPaaSdemo)

 - (BOOL)enableUserOverWriteAuthAlert {
 // If the user has clicked "Agree" for privacy terms, "NO" is returned, which i
ndicates that mPaaS components can normally call relevant APIs.
 // Otherwise, "Yes" is returned, which indicates that mPaaS components will
hold the calls of relevant APIs.
 return ![[NSUserDefaults standardUserDefaults] boolForKey:@"xx_pr"];
 }

 @end

2. Prevent the early reporting of log tracking.
If you have accessed tracking-related components, you must call the MPAnalysisHelper
holdUploadLogUntilAgreed method in the startup process to prevent the early reporting of log
tracking.
Note: You can determine whether tracking-related components have been accessed by
checking whether APRemoteLogging.framework exists.
Sample code (we recommend that you call it at the earliest possible time)

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 49

3. Manually initialize container Context.
If you have integrated the HTML5 container, offline package, and mini program components,
you must manually initialize container Context in the - (void)application:(UIApplication
*)application afterDidFinishLaunchingWithOptions:(NSDictionary *)launchOptions method.
The code sample is as follows:

- (void)application:(UIApplication *)application afterDidFinishLaunchingWithOptions:(NS
Dictionary *)launchOptions
{
 ...
 // Initialize container Context.
 [MPNebulaAdapterInterface setNBContextWhenEnablePrivacyAuth];

 ...
}

About mPaaS 10.1.60
1. The 10.1.60 baseline now supports WKWebView. For details, see Version 10.1.60 is adapted

to WKWebView. Since App Store will no longer accept new apps that use UIWebView from
April 2020, and will no longer accept updates to apps that use UIWebview from December
2020. For details, see Apple’s official announcement. For this reason, developers need to
replace UIWebView with WKWebView.

2. The 10.1.60 baseline has been adapted to iOS 13 and Xcode 11. For details, see mPaaS
10.1.60 is adapted to iOS 13.

3. The 10.1.60 baseline adds the mini program component. The official version of the mini
program has a complete set of APIs, with greatly improved stability and compatibility. For
mini program upgrade, see Mini program upgrade instructions. For details about the
debugging, preview, and publishing functions added for the mini program IDE, see Develop
mini programs.

4. The 10.1.60 baseline dramatically optimizes HTML5 containers, provides a more simplified
access process, and significantly improves its compatibility and stability. For the upgrade of
HTML5 containers and offline packages, see the HTML5 container upgrade guide.

5.3. mPaaS 10.1.60 baseline
upgrade guide

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 50

https://developer.apple.com/news/%5C?id=12232019b

5. The 10.1.60 baseline adds MCDP (Mobile Content Delivery Platform) assembly. MCDP
provides the feature to personalize advertising in applications, supports personalized
advertising to targeted groups, and helps APP operators reach users accurately and timely.
Please read Mobile Content Delivery for more information.

6. The 10.1.60 baseline greatly improves the compatibility and stability of overall components
and its functionality. For the release notes for this version, see iOS SDK release notes.

7. The 10.1.60 baseline no longer supports iOS 8.

mPaaS 10.1.60 upgrade instructions
Use CocoaPods for upgrade
Prerequisites
The CocoaPods mPaaS plug-in has been installed.

If you have not installed the CocoaPods mPaaS plug-in, execute the following script on the
terminal to install the plug-in.

 sh <(curl -s http://mpaas-ios.oss-cn-
hangzhou.aliyuncs.com/cocoapods/installmPaaSCocoaPodsPlugin.sh)

If you have installed the CocoaPods mPaaS plug-in, directly run the upgrade command pod
mpaas update --all to upgrade the plug-in. For details about using the CocoaPods mPaaS
plug-in, see Use CocoaPods for access based on the native framework.

Procedure
1. In Podfile, change the SDK version to 10.1.60.

2. Run the command pod mpaas update 10.1.60 to install the latest SDK of version 10.1.60
for the baseline.

3. Run the pod install or pod update command as needed to upgrade the SDK to
version 10.1.60 in the project.

Follow-up steps
If you encounter the following error when accessing CocoaPods:

Invalid `Podfile` file: [!] No mPaaS_Nebula : 10.1.60-beta found !!! Check name & versi
on in Podfile.

Try this solution:
1. Run the command gem list | grep 'mPaaS' to view the CocoaPods plug-in version, as

shown in the following figure.

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 51

2. If the CocoaPods plug-in version is earlier than 0.9.5, execute the following script to
reinstall the plug-in.

sh <(curl -s http://mpaas-ios.oss-cn-
hangzhou.aliyuncs.com/cocoapods/installmPaaSCocoaPodsPlugin.sh)

Component usage and upgrade instructions
In the 10.1.60 baseline, the accessibility and usability of HTML5 container and mini program
have been greatly improved. If you have used these components, read the following
instructions in detail.

Read HTML5 container upgrade guide for version 10.1.60 for details about upgrading
HTML5 containers and offline packages.
Read Upgrade guide for mini program Version 10.1.60 for details about upgrading applets.

Component API changes
Starting from the 10.1.32 baseline, the mPaaS component adds an adaptation layer. If your
baseline is not using adaptation-layer APIs, read mPaaS 10.1.32 is adapted to iOS 13 first.
We recommend that you use the APIs of the adaptation layer after upgrading the SDK. For
details, see the following upgrade instructions for different components:

Mobile Gateway
HTML5 Offline Packages
Mobile Sync Service
Client diagnosis
Publishing Management

Note
Pay special attention to the directory and info.plist configuration changes for
mPaaS components in the project.
We strongly recommend that you modify the code and use middle-layer (adapter)
methods instead of directly using underlying methods, because certain underlying
methods may be modified or discarded in future versions. You may need to take
lots of time adapting them in future updates if you continue to use them.

Change of the directory structure
Among the component category directories and files under the MPaaS directory of the
project, only APMobileFramework and mPaas are kept after the upgrade. All the other
directories, such as MPHotpatchSDK and APRemoteLogging , are automatically removed. If
there are any custom files saved under these directories, you need to back up them in
advance. For details of the directory structure, see mPaaS directory structure.

Change of Info.plist
The following figure shows the related mPaaS fields inserted in the Info.plist file of the project
before the upgrade.

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 52

In 10.1.32 and later versions, only the Product Version field is required. After the baseline
is upgraded, the plug-in automatically removes the Product ID , mPaaS , and
 mPaaSInternal fields. If the plug-in fails to remove these fields, you need to delete them
manually. The following figure shows the fields after the upgrade.
Note: Do not delete the Product Version field when you delete the fields manually.

Handle custom libraries
The components of the 10.1.60 baseline incorporate customization requirements. However, if
you included custom libraries in your dependencies and upgraded the SDK from an earlier
version (such as 10.1.32) to version 10.1.60, you may need to customize the custom libraries
again based on the new version for security reasons. To do this, submit a ticket or contact
mPaaS technical support personnel for consultation.

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 53

https://workorder-intl.console.aliyun.com/console.htm?spm=a2c63.p38356.9135018350.28.301e6e4cwi0Njo&lang=#/ticket/createIndex

WKWebView is the new-generation built-in browser component in iOS 8 introduced by Apple.
It is designed to replace the outdated UIWebView component. This component features multi-
process rendering, including page scrolling without affecting image resource loading, crash
protection without affecting the main process, and reduced memory usage. Compared with
UIWebView, WKWebView has greatly improved its performance, stability, and user
experience. After several years of iteration (from iOS 8 to iOS 9, iOS 10, iOS 11, and iOS 12),
WKWebView has gradually solved all the problems that occurred in the early stage of its
launch and improved its stability.
After iOS 12 was released, Apple APIs began to prompt users to gradually discard the
UIWebView API. Since August 2019, when developers submit their apps with the UIWebView
component to App Store for approval, they are prompted with the following warning to remind
them to switch to WKWebView soon.
Additionally, Apple announced on December 23, 2019 that App Store will no longer accept
new apps developed by using UIWebView from April 2020, and will no longer accept updates
to existing apps developed by using UIWebview from December 2020.
In response to this situation, mPaaS has been adapted to WKWebView and supports switching
from UIWebView to WKWebView. In order to ensure the stability of HTML5 pages after the
switchover from UIWebView to WKWebView, the adaptation process of mPaaS to WKWebView
is divided into the following two stages:

Stage 1: Since November 2019, the mPaaS baseline supports the coexistence of UIWebView
and WKWebView, and gradually switches to WKWebView through canary deployment
capabilities.
Stage 2: Since March 2020, the mPaaS baseline deletes all UIWebView-related code, and all
HTML5 services are switched to WKWebView.

The mPaaS 10.1.60 baseline has completed stage 1 of adaptation. For users who integrate
mPaaS HTML5 container and mini program components, they need to upgrade to the latest
10.1.60 baseline as soon as possible by observing the following instructions (Upgrade the
baseline), and to switch to WKWebView (Use WKWebView).

Upgrade the baseline
Based on app release situations, users who integrate mPaaS HTML5 container and mini
program components need to take actions based on the following principles and upgrade the
baseline to adapt to WKWebView.

For apps launched in App Store before April 2020: To ensure the stability of switching your
existing services to WKWebView, we recommend that you upgrade to the 10.1.60 baseline
to support online canary deployment and rollback. For upgrade instructions, see
Instructions for upgrading to version 10.1.60.
For new apps that are not yet launched in App Store before April 2020: Since App Store will
no longer accept new apps with UIWebView after April, you must use version 10.1.68
without UIWebView-related code and be prepared for service regression testing and
verification. For upgrade instructions, see Instructions for upgrading to mPaaS 10.1.68-
Beta.

Use WKWebView
mPaaS containers use UIWebView to load HTML5 pages by default. The mPaaS framework
supports two WKWebView enablement methods: global enablement and canary
deployment enablement.

The 10.1.60 baseline

5.4. Adapt to WKWebview

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 54

In the 10.1.60 baseline, UIWebView and WKWebView coexist in mPaaS containers, where
UIWebView is used to load HTML5 pages by default. You can globally enable WKWebView in
the following way to make all pages that are loaded by mPaaS containers use WKWebView.

- (void)application:(UIApplication *)application afterDidFinishLaunchingWithOptions:(NS
Dictionary *)launchOptions
{
 //...
 // Globally enable WKWebView
 [MPNebulaAdapterInterface shareInstance].nebulaUseWKArbitrary = YES;
 //...
}

After you enable WKWebView, you can view the UA of the current HTML5 page. If the UA
contains the WK string shown in the following figure, this page has been successfully
switched to use WKWebView.

Other instructions
After WKWebView is globally enabled, in order to ensure the functional stability of online
HTML5 pages, the mPaaS framework provides online stop-loss capabilities to help you
quickly switch WKWebView to UIWebView. The procedure is as follows.
Add a configuration switch to the real-time publishing component to prevent it from using
UIWebView for offline packages or URLs.
The Key (key) of the configuration switch is h5_wkArbitrary , and the Value (value) is as

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 55

The Key (key) of the configuration switch is h5_wkArbitrary , and the Value (value) is as
follows:

{
 "enable": true,
 "enableSubView": false,
 "exception": [
 {
 "appId": "^(70000000|20000193)$"
 },
 {
 "url": "https://invoice[.]starbucks[.]com[.]cn/"
 },
 {
 "url":"https://front[.]verystar[.]cn/starbucks/alipay-invoice"
 }]
}

The following table describes the value configuration items.

Configuration item Description Remarks

enable
Whether to enable WKWebView. true for yes
and false for no.

The default is
 false .

enableSubView
Whether to enable WKWebView for the embedded
webView in the mini program. true for yes
and false for no.

The default is
 false .

exceptio
n

appId
WKWebView is not used for all HTML5 pages that
match the appId regular expression in offline
packages. The default is nil .

This field is valid only
when enable is set
to true .

url WKWebView is not used for all HTML5 pages that
match the url regular expression.

The 10.1.68-beta baseline

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 56

Containers in version 10.1.68-beta use WKWebView to load offline packages and mini
programs by default. You can view the UA of the current HTML5 page. If the UA contains the
 WK string shown in the following figure, the current page has been successfully switched to
use WKWebView.

Background
Since April.25th 2022, apps that are to be submitted to App Store must be built based on
Xcode 13. For the new tool chain, the App needs to be adapted.

Status quo
mPaaS has adapted and tested for Xcode 13 in 10.1.68.47 and above version baseline.

Upgrade SDK/components
Use CocoaPods for upgrade
Follow the steps below to install the latest SDK version 10.1.68:

1. In Podfile, change the SDK version to 10.1.68.

Run the command pod mpaas update 10.1.68 . If it prompts an error, you need to update

5.5. mPaaS 10.1.68 baseline adapt
to Xcode 13

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 57

2. Run the command pod mpaas update 10.1.68 . If it prompts an error, you need to update
the plug-in first through the pod mpaas update -all command, and then execute
command pod mpaas update 10.1.68 again.

3. Run the command pod install .

API changes
No API changes are required for this adaptation.

Handle custom baselines
If you are using a custom baseline, you may need to customize the baseline again based on
the new version. To do this, please search for group number 41708565 with DingTalk to join
DingTalk group to contact mPaaS technical support staff for consultation.

List of libraries adapted to iOS 15 updates
The map component upgrades the default Amap to version 7.1.14.
Share component.
Some internal dependencies.

We recommend that you perform full regression testing in iOS 15 after you have adapted
mPaaS 10.1.68 to iOS 15.

Verification scope
Since the upgrade of Apple's toolchain is a black-box operation, it often brings stability and
other issues. After the app is adapted to Xcode 13, it is recommended to conduct a
comprehensive regression test

This topic describes how to adapt mPaaS with the baseline 10.1.68 to iOS 15.

Background
Apple has officially released iOS 15 in September, 2021. The apps must be adapted to new
system features and APIs. Currently, mPaaS has adapted and tested for iOS 15 in the
10.1.68.38 and later baselines.

Status quo
As the basic library, mPaaS has adapted and tested for iOS 15 built using the IPA package
generated by Xcode 12. If you plan to launch your apps in Apple App Store, you must use
Xcode 12 for packaging. The tool chain for Xcode 13 is being improved. After the tool chain
is improved, mPaaS will release a version adapted to iOS 15 built under Xcode 13.

Upgrade the SDK or components
Upgrade based on CocoaPods
Install the latest SDK of version 10.1.68 by performing the following steps:

1. Check that the mPaaS version is 10.1.68 in Podfile.
2. Run the pod mpaas update 10.1.68 command. If an error is returned, run the pod mpaas

update --all command to update the plug-in and then rerun the command.

Run the pod install command.

5.6. mPaaS 10.1.68 baseline adapt
to iOS 15

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 58

3. Run the pod install command.

API changes
No API changes are required for this adaptation.

Handle custom baselines
If you are using a custom baseline, you may need to customize the baseline again based on
the new version. To do this, search for group number 41708565 with DingTalk to join
DingTalk group to contact mPaaS technical support staff for consultation.

List of libraries adapted to iOS 15 updates
Mini program
HTML5 container
Some internally dependent components

We recommend that you perform full regression testing in iOS 15 after you have adapted
mPaaS 10.1.68 to iOS 15.

Background
Apple officially released iOS 14 on September 17, 2020. App must be adapted to new system
features and APIs. Currently, mPaaS with the baseline 10.1.68.17 or later has been adapted
and tested for iOS 14.
Important: As the basic library, the mPaaS version 10.1.68.27 and later have been adapted to
iOS 14 built under Xcode 12.

Upgrade the SDK or components
Upgrade based on Extension plug-in
Use the mPaaS Xcode Extension plug-in to upgrade SDK/components. You can choose the
following two methods：

Update product set
Upgrade Baseline

Choose the upgrade method according to your own situation：
If you have already used the Extension plug-in to manage component dependencies,
however, the current baseline version is lower than 10.1.68. You can use the upgrade
baseline function to upgrade to version 10.1.68.

Note
You can view the currently used baseline version in the upgrade baseline of the plug-
in.

If you have already used plug-in to manage component dependencies, and the baseline
version is 10.1.68, then you can use Update product set feature to upgrade modules you
are using.

5.7. mPaaS 10.1.68 baseline adapt
to iOS 14

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 59

If you have not used plug-in to manage component dependencies, you can upgrade by
following steps:
i. Install mPaaS Xcode Extension.
ii.

Upgrade based on CocoaPods
Install the latest SDK of version 10.1.68 by completing the following steps:

1. Check that the mPaaS version is 10.1.68 in Podfile.
2. Run the command pod mpaas update 10.1.68 .

If an error is returned, run the command pod mpaas update --all to update the plug-in
and then rerun the previous command.

3. Run the pod install command.

Handle custom baselines
If you are using a custom baseline, you may need to customize the baseline again based on
the new version. To do this, submit a ticket or contact mPaaS technical support personnel for
consultation.

Background
iOS 13 was officially released on September 20, 2019. During the testing of the iOS 13 beta
and official versions, we found that some behaviors of the system changed. Therefore, you
must perform app adaptation before using it, otherwise problems such as functional
exceptions and crashes may occur.
Before the mPaaS adaptation, the major impact on the mPaaS SDK built by Xcode 10 on iOS
13 devices is as follows. Since iOS 13 optimizes app startup and modifies the mirror
loading mechanism, the system category may overwrite the category methods
defined in the SDK. As a result, custom methods cannot return expected results.
Important: As the basic library, the mPaaS version 10.1.60.26 and later have been adapted
to iOS 13 built under Xcode 11.

Upgrade the SDK or components
Upgrade based on CocoaPods
Install the latest SDK of version 10.1.60 by completing the following steps.

1. Check that the mPaaS version is 10.1.60 in Podfile.
2. Run the command pod mpaas update 10.1.60 .

If an error is returned, run the command pod mpaas update --all to update the plug-in
and then rerun the previous command.

3. Run the pod install command.

API changes
The mPaaS component added an adaptation layer in version 10.1.32 and later. We
recommend that you use the API of the adaptation layer after upgrading the SDK. For details,
see the following upgrade instructions for different components:

5.8. mPaaS 10.1.60 baseline adapt
to iOS 13

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 60

https://workorder-intl.console.aliyun.com/console.htm?spm=a2c63.p38356.9135018350.28.301e6e4cwi0Njo&lang=#/ticket/createIndex

Mobile Gateway Service
Configure project
HTML5 Offline Packages
Mobile Sync Service
Client diagnosis
Publishing Management

Notes:
Pay special attention to the directory and info.plist configuration changes for mPaaS
components in the project.
We strongly recommend that you modify the code and use middle-layer (adapter) methods
instead of directly using underlying methods, because certain underlying methods may be
modified or discarded in future versions. You may need to take lots of time adapting them
in future updates if you continue to use them.

Change of the directory structure
Among the component category directories and files under the MPaaS directory of the
project, only APMobileFramework and mPaas are kept after the upgrade. All the other
directories, such as APRemoteLogging , is automatically removed. If there are any custom
files saved under these directories, you need to back up them in advance. For details of the
directory structure, see mPaaS directory structure.

Change of Info.plist
The following figure shows the related mPaaS fields inserted in the Info.plist file of the project
before the upgrade.

In 10.1.32 and later versions, only the Product Version field is required. After the baseline
is upgraded, the plug-in automatically removes the Product ID , mPaaS , and
 mPaaSInternal fields. If the plug-in fails to remove these fields, you need to delete them
manually. The following figure shows the fields after the upgrade.
Note: Do not delete the Product Version field when you delete the fields manually.

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 61

Handle custom libraries
The components in version 10.1.60 incorporate customization requirements. However, if your
dependencies include custom libraries, you must take the following actions to handle them
accordingly for security reasons.

If you upgraded the SDK from an earlier version (such as 10.1.20) to 10.1.60, you may need
to customize custom libraries again based on the new version. To do this, submit a ticket or
contact mPaaS technical support personnel.
If the SDK version is 10.1.60, update certain components. See List of libraries adapted to
iOS 13 updates to check whether your custom libraries are contained in the list.

If no, you can continue to use these custom libraries.
If yes, you may need to customize them again. To do this, submit a ticket or contact
mPaaS technical support personnel.

List of libraries adapted to iOS 13 updates
mPaas
MPDataCenter
MPPushSDK
APMultimedia
BEEAudioUtil
BeeCapture
BeeCityPicker
BeeMediaPlayer
BeePhotoBrowser
BeePhotoPicker
NebulaAppBiz

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 62

https://workorder-intl.console.aliyun.com/console.htm?spm=a2c63.p38356.9135018350.28.301e6e4cwi0Njo&lang=#/ticket/createIndex
https://workorder-intl.console.aliyun.com/console.htm?spm=a2c63.p38356.9135018350.28.301e6e4cwi0Njo&lang=#/ticket/createIndex

NebulaBiz
NebulaSecurity
NebulaKernel
NebulaSDKPlugins
NebulaSDK
NebulaConfig
NebulaTinyAppDebug
NebulaNetwork
TinyAppCommon
APConfig
AntUI
MPPromotion
BeeLocation
MPMpaaSService
TinyAppService
AMap

Important: Since June 28, 2020, mPaaS has discontinued the maintenance of the 10.1.32 baseline.
We recommend that you use the 10.1.68 or 10.1.60 baseline.

Background
iOS 13 was officially released on September 19, 2019. During the testing of iOS 13, we found
that some behaviors of the system changed. Therefore, you must perform app adaptation
before using it. Otherwise problems such as functional exceptions and crashes may occur.
Before the adaptation of mPaaS to iOS 13, the major impact on the mPaaS SDK built by Xcode
10 on iOS 13 devices is as follows: Since iOS 13 optimizes app startup and modifies the
mirror loading mechanism, the system category may overwrite the category
methods defined in the SDK. As a result, custom methods cannot return expected
results.

Status quo
As a basic library, mPaaS has been adapted to iOS 13 built under XCode 10. Since mPaaS is
currently adapted only for Xcode 10 packaging, you must use Xcode 10 for packaging
and submit the package to App Store.
The tool chain for Xcode 11 is not yet complete. With the enhancement of the tool chain,
mPaaS will release a version adapted to iOS 13 built under Xcode 11.

Upgrade the SDK or components
Upgrade based on CocoaPods
Install the latest SDK of version 10.1.32 by completing the following steps.

5.9. mPaaS 10.1.32 baseline adapt
to iOS 13

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 63

1. Check that the mPaaS version is 10.1.32 in Podfile.
2. Run the command pod mpaas update 10.1.32 .

If an error is returned, run the command pod mpaas update --all to update the plug-in
and then rerun the previous command.

3. Run the pod install command.

API changes
The mPaaS component added an adaptation layer in version 10.1.32. We recommend that
you use the API of the adaptation layer after upgrading the SDK. For details, see the following
upgrade instructions for different components:

Mobile Gateway Service
HTML5 Offline Packages
Mobile Sync Service
Client diagnosis
Publishing Management

Notes:
Pay special attention to the directory and info.plist configuration changes for mPaaS
components in the project.
We strongly recommend that you modify the code and use middle-layer (adapter) methods
instead of directly using underlying methods, because certain underlying methods may be
modified or discarded in future versions. You may need to take lots of time adapting them
in future updates if you continue to use them.

Change of the directory structure
Among the component category directories and files under the MPaaS directory of the
project, only APMobileFramework and mPaas are kept after the upgrade. All the other
directories, such as APRemoteLogging , is automatically removed. If there are any custom
files saved under these directories, you need to back up them in advance. For details of the
directory structure, see mPaaS directory structure.

Change of Info.plist
The following figure shows the related mPaaS fields inserted in the Info.plist file of the
project before the upgrade.

In 10.1.32 and later versions, only the Product Version field is required. After the baseline

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 64

In 10.1.32 and later versions, only the Product Version field is required. After the baseline
is upgraded, the plug-in automatically removes the Product ID , mPaaS , and
 mPaaSInternal fields. If the plug-in fails to remove these fields, you need to delete them
manually. The following figure shows the fields after the upgrade.
Note: Do not delete the Product Version field when you delete the fields manually.

Handle custom libraries
The components in version 10.1.32 incorporate customization requirements. However, if your
dependencies include custom libraries, you must take the following actions to handle them
accordingly for security reasons.

If you upgraded the SDK from an earlier version to 10.1.32, you may need to customize
custom libraries again based on the new version. To do this, submit a ticket or contact
mPaaS technical support personnel for confirmation.
If the SDK version is 10.1.32, upgrade certain components. See List of libraries adapted to
iOS 13 updates to check whether your custom libraries are contained in the list.

If no, you can continue to use these custom libraries.
If yes, you may need to customize them again. To do this, submit a ticket or contact
mPaaS technical support personnel.

List of libraries adapted to iOS 13 updates
mPaas
MPDataCenter
APMultimedia
BEEAudioUtil
BeeCapture
BeeCityPicker
BeeMediaPlayer

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 65

https://workorder-intl.console.aliyun.com/console.htm?spm=a2c63.p38356.9135018350.28.301e6e4cwi0Njo&lang=#/ticket/createIndex
https://workorder-intl.console.aliyun.com/console.htm?spm=a2c63.p38356.9135018350.28.301e6e4cwi0Njo&lang=#/ticket/createIndex

BeePhotoBrowser
BeePhotoPicker
NebulaAppBiz
NebulaBiz
NebulaSDKPlugins
APConfig
AntUI
NebulaSDK
TinyAppCommon
MPPromotion

Access iOS User Guide·Adaption to iOS

> Document Version: 20231226 66

During app development, it is often required to customize the top navigation bar. This topic
describes how to customize the navigation bar on a page created based on the MPaaS
framework and including customizing the theme of the app and customizing the navigation
bar style for a specific page.

Basic concepts
Distribution of navigation bar elements
Navigation bar elements are mainly distributed in three areas. Generally, navigation bar
customization involves modifying these areas.

1. Back: The Back button control area that is created by the base class of the mPaaS page.
The default format is back arrow + “Back”.

2. Title/Subtitle: The title bar control area, which is not displayed by default. To display this
area, call the system method to set the title of the current page.

3. Option menu: The page menu option area, which is not displayed by default. To display this
area, call the system method to set rightNavigationItem for the current page.

Navigation bar structure

6.Reference
6.1. Customize the iOS navigation
bar

Access iOS User Guide·Reference

> Document Version: 20231226 67

As shown in the following figure, the default UI structure for apps created based on the
mPaaS framework is as follows: window/navigationController > tabViewController >
 viewController embedded for each tab. In other words, the root of the main window of
the app is a UINavigationController object, and the root of UINavigationController is
a UITabViewController .

The preceding UI structure shows that the entire app has only one navigationController
globally. Therefore, all pages share the same navigation bar (created by using
 APNavigationBar by default).

For unifying the navigation bar styles of all pages, it is required that in the mPaaS app, all
VCs where a page resides must inherit DTViewControler , including the native and HTML5
pages.

Access iOS User Guide·Reference

> Document Version: 20231226 68

The default theme of the app created based on the mPaaS framework is characterized by a
white background, black text, and blue button.

Customize the theme of the app
Each app has its own theme. Modify the default theme of the mPaaS app as follows:

To modify the background color of the navigation bar, back control area, or title control
area, rewrite the au_defaultTheme_extraInfo method of the AUThemeManager class and
modify the return values of the following keys:

API method

@interface AUThemeManager(AUExtendinfo)
/* Default theme is set for Alipay client, and is modifiable for independent apps.
* n this method only need to return a key-value pair different from the default the
me. Please use the key defined in AUTheme.h.
*/
+(NSDictionary *)au_defaultTheme_extraInfo;

@end
/*
* Example
* +(NSDictionary*)au_defaultTheme_add_Info
* {
* NSMutableDictionary *dict = [INSMutableDictionary alloc] init];
* dictITITLEBAR_BACKGROUND_COLOR] = AU_COLOR_APP_GREEN; // AUTitleBar background
color
* dit[TITLEBAR TITLE TEXTCOLOR1 = [UIColor redColor]; // AUTitleBar title color
* ...
* return dict;
* }
*/

Access iOS User Guide·Reference

> Document Version: 20231226 69

Sample code

 @implementation AUThemeManager (Portal)

+ (NSDictionary *)au_defaultTheme_extraInfo
{
 NSMutableDictionary *dict = [[NSMutableDictionary alloc] init];
 dict[TITLEBAR_BACKGROUND_COLOR] = @"COLOR(#108EE9,1)"; // Set the background co
lor of the navigation bar
 dict[TITLEBAR_LINE_COLOR] = @"COLOR(#108EE9,1)"; // Set the color of the
separation line or sideline at the bottom of the navigation bar
 dict[TITLEBAR_TITLE_TEXTCOLOR] = @"COLOR(#ffffff,1)"; // Set the title text co
lor of the navigation bar
 dict[TITLEBAR_TITLE_TEXTSIZE_BOLD] = @"FONT(18)"; // Set the title text fo
nt size of the navigation bar
 dict[TITLEBAR_TEXTCOLOR] = @"COLOR(#ffffff,1)"; // Set the Back button c
olor of the navigation bar

 return dict;
}

@end
}

Note
Note: You must set the color value in the COLOR(#108EE9,1) format, otherwise an
error will be returned.

To modify the Back button icon in theme configuration, rewrite the
 au_default_backButtonImg method in the AUBarButtonItem class.

API method

#import "AUUILoadDefine.h"//The program automatically generates.
#ifdef ANTUI_UI_TitleBar_AUBarButtonltem//The program automatically generates.
//
// AUBarButtonltem+AUExtendInfo.h
// AntUI
//
// Copyright © 2017 Alipay. All rights reserved.
//
#import "AUBarButtonltem.h"

@interface AUBarButtonltem(AUExtendInfo)

//Default return button is a blue icon for Alipay, and is modifiable for independen
t apps.
+(UIImage *)au_default_backButtonlmg;

@end

Access iOS User Guide·Reference

> Document Version: 20231226 70

Sample code

@implementation AUBarButtonItem (CGBBarButtonItem)

 + (UIImage *)au_default_backButtonImg
 {
 // Customize the Back icon
 return APCommonUILoadImage(@"back_button_normal_white");

 }
 @end

Modify the Back button style and text for all pages.

Customize the navigation bar style for a specific page
In addition to themes, sometimes you need to customize the navigation bar style for the
current page, for example, modify the background color or Back button style. mPaaS provides
different methods for modification at different times.

Before loading a page , to modify the navigation bar color on the basis of the default
navigation bar style, implement the method defined in
DTNavigationBarAppearanceProtocol and modify the color of the corresponding area.

API method

Access iOS User Guide·Reference

> Document Version: 20231226 71

@protocol DTNavigationBarAppearanceProtocol<NSObject>

@optional

/** Whether this DTViewController needs to automatically hide navigationBar. The de
fault value is NO, If a ViewController in business needs to hide navigationBar, rel
oad this method and return YES.
**/
-(BOOL)autohideNavigationBar;

/** If the current VC needs to set a hidden navigation bar as fully transparent, an
d set the current page with the return copy matching the framework logic., reload t
his method and return an instance of APCustomerNavigationView.
-(UIView *)customNavigationBar;

/** If a viewcontroller needs to set its titlebar as opaque and assign a color to t
he titlebar, rewrite this method and return the expected color.
* Only for the pushed VC. VC in tabbar can not modify the translucent property of
navigationBar.
*/
-(UIColor *)opaqueNavigationBarColor;

/**
* If a viewcontroller needs to modify the style of status bar, rewrite this method
and return the expected style.
 */
- (UIStatusBarStyle)customStatusBarStytle;

/**
 * If a viewcontroller wants to modify the color of the navigation bar title, plea
se override this method and return the desired color.
 */
- (UIColor *)customNavigationBarTitleColor;

Sample code

Access iOS User Guide·Reference

> Document Version: 20231226 72

#pragma mark DTNavigationBarAppearanceProtocol: Modify the navigation bar style whe
n entering the page.
- (UIColor *)opaqueNavigationBarColor
{
 // Set the background color of the navigation bar to red for the current page .
 return [UIColor redColor];

// // Set the navigation bar to transparent for the current page
// return [UIColor colorWithRGB:0xff0000 alpha:0];
}

- (BOOL)autohideNavigationBar
{
 // Set whether to hide the navigation bar for the current page
 return NO;
}

- (UIStatusBarStyle)customStatusBarStytle
{
 // Set the status bar style for the current page
 return UIStatusBarStyleDefault;
}

- (UIColor *)customNavigationBarBackButtonTitleColor
{
 // Set the text color of the Back button for the current page
 return [UIColor greenColor];
}

- (UIImage *)customNavigationBarBackButtonImage
{
 // Set the Back icon for the current page.
 return APCommonUILoadImage(@"back_button_normal_white");
}

- (UIColor *)customNavigationBarTitleColor
{
 // Set the title color for the current page.
 return [UIColor greenColor];
}

After a page is opened , you can modify the navigation bar style and the menu button on
the right side of the page during your operations. For example, you can make the
background color to change gradually when you slide the slider. Modification of the
following areas is supported:

Background area: Hide/Show the navigation bar, set the navigation bar to transparent,
modify the background color of the navigation bar, and modify the color of the status bar.

Access iOS User Guide·Reference

> Document Version: 20231226 73

- (void)gotoHideNavigator
{
 // Hide the navigation bar
 [self.navigationController.navigationBar setHidden:YES];
}

- (void)gotoShowNavigator
{
 // Show the navigation bar
 [self.navigationController.navigationBar setHidden:NO];
}

- (void)gotoTransparency
{
 // Set the navigation bar to transparent
 [self.navigationController.navigationBar setNavigationBarTranslucentStyle];
}

- (void)gotoUpdateBackgroundColor
{
 // Modify the background color of the navigation bar
 [self.navigationController.navigationBar setNavigationBarStyleWithColor:[UIColo
r whiteColor] translucent:NO];
 [self.navigationController.navigationBar setNavigationBarBottomLineColor:[UICol
or whiteColor]];
}

- (void)gotoUpdateStatusBarStyle
{
 // Modify the status bar color
 [[UIApplication sharedApplication]
setStatusBarStyle:UIStatusBarStyleLightContent];
}

Back control area: Modify the default text and color of the Back button, modify the
default arrow style of the Back button, and reset the style of the Back button.

Access iOS User Guide·Reference

> Document Version: 20231226 74

- (void)gotoUpdateBackTitleColor
{
 // Modify the default text color of the Back button
 NSArray *leftBarButtonItems = self.navigationItem.leftBarButtonItems;
 if ([leftBarButtonItems count] == 1) {
 if (leftBarButtonItems[0] && [leftBarButtonItems[0] isKindOfClass:
[AUBarButtonItem class]]) {
 AUBarButtonItem *backItem = leftBarButtonItems[0];
 backItem.titleColor = [UIColor blackColor];
 }
 }
}

- (void)gotoUpdateBackImage
{
 // Modify the default arrow style of the Back button
 NSArray *leftBarButtonItems = self.navigationItem.leftBarButtonItems;
 if ([leftBarButtonItems count] == 1) {
 if (leftBarButtonItems[0] && [leftBarButtonItems[0] isKindOfClass:
[AUBarButtonItem class]]) {
 AUBarButtonItem *backItem = leftBarButtonItems[0];
 backItem.backButtonImage = APCommonUILoadImage(@"back_button_normal");
 }
 }
}

- (void)gotoUpdateBackItem
{
 // Reset the style of the Back button
 self.navigationItem.leftBarButtonItem = [AUBarButtonItem
barButtonItemWithImageType:AUBarButtonImageTypeDelete target:self
action:@selector(onClickBack)];
}

- (void)onClickBack
{
 [self.navigationController popViewControllerAnimated:YES];
}

Title control area: Modify the default title color, set the title and subtitle, and enable the
title to be displayed as a picture.```
(void)gotoUpdateTitleColor{ // Modify the title color
[self.navigationController.navigationBar
setNavigationBarTitleTextAttributesWithTextColor:[UIColor blackColor]];}
(void)gotoTwoTitle{ // Modify the title style: title and subtitle
self.navigationItem.titleView = [[AUDoubleTitleView alloc] initWithTitle:@”Title”
detailTitle:@”Subtitle”];}
(void)gotoTitleImage{ // Modify the title style to picture UIImageView *imageView =
[[UIImageView alloc]
initWithImage:APCommonUILoadImage(@”ilustration_ap_expection_alert”)];
imageView.frame = CGRectMake(0, 0, self.self.view.width-100, 64);
self.navigationItem.titleView = imageView;}```

Access iOS User Guide·Reference

> Document Version: 20231226 75

Menu control area: Set a single or multiple menu buttons on the right.

- (void)gotoSetOptionMenu
{
 // Set a single button on the right side
 self.navigationItem.rightBarButtonItem = [AUBarButtonItem
barButtonItemWithImageType:AUBarButtonImageTypeGroupChat target:self
action:@selector(onClickRightItem)];
}

- (void)gotoSetTwoOptionMenu
{
 // Set two buttons on the right side
 AUBarButtonItem *item1 = [AUBarButtonItem
barButtonItemWithImageType:AUBarButtonImageTypeGroupChat target:self
action:@selector(onClickRightItem)];
 AUBarButtonItem *item2 = [AUBarButtonItem
barButtonItemWithImageType:AUBarButtonImageTypeHelp target:self
action:@selector(onClickRightItem)];
 self.navigationItem.rightBarButtonItems = @[item1, item2];
}

Immersive navigation bar: In immersive mode, the navigation bar is transparent when
you access the page, and opaque after you slide to a specified position. The details are as
follows:

Set the navigation bar to be transparent when you access the page. Rewrite the following
API in the VC where the current page resides.

 - (UIColor *)opaqueNavigationBarColor
 {
 // Set the navigation bar to transparent for the current page
 return [UIColor colorWithRGB:0xff0000 alpha:0];
 }

Access iOS User Guide·Reference

> Document Version: 20231226 76

After sliding to a specified position, modify the styles of the background area, back area,
title area, and menu area of the navigation bar.

 - (void)gotoUpdateBackgroundColor
 {
 // Modify the background color of the navigation bar
 [self.navigationController.navigationBar setNavigationBarStyleWithColor:[UICo
lor whiteColor] translucent:NO];
 [self.navigationController.navigationBar setNavigationBarBottomLineColor:[UIC
olor whiteColor]];
 }

 - (void)gotoUpdateBackTitleColor
 {
 // Modify the default text color of the Back button
 NSArray *leftBarButtonItems = self.navigationItem.leftBarButtonItems;
 if ([leftBarButtonItems count] == 1) {
 if (leftBarButtonItems[0] && [leftBarButtonItems[0] isKindOfClass:
[AUBarButtonItem class]]) {
 AUBarButtonItem *backItem = leftBarButtonItems[0];
 backItem.titleColor = [UIColor blackColor];
 }
 }
 }

 - (void)gotoUpdateTitleColor
 {
 // Modify the title color
 [self.navigationController.navigationBar
setNavigationBarTitleTextAttributesWithTextColor:[UIColor blackColor]];
 }

When accessing mPaaS, the mPaaS SDK may conflict with other open-source libraries or third-
party libraries introduced into the project, leading to project compilation failure. This topic
introduces the solutions to two common types of conflicts.
Based on the types of libraries that cause the conflict, two categories of solutions are
available:

mPaaS custom libraries: If custom libraries of the mPaaS SDK conflict with other libraries in
the project, you must use these custom mPaaS libraries.
Non-mPaaS custom libraries: If conflicting mPaaS SDK libraries are not mPaaS custom
libraries, you can delete the libraries introduced by mPaaS.

Solutions to conflicting mPaaS custom libraries
If conflicting mPaaS SDK libraries are custom libraries, you must use these custom mPaaS
libraries.

Open-source library
name mPaaS library name Conflict solution

6.2. Handle iOS conflict

Access iOS User Guide·Reference

> Document Version: 20231226 77

AlipaySDK AlipaySDK
The mPaaS version, which solves conflicts with
modules such as mPaaS RPC and UTDID, must be
used. At the same time, the mPaaS_RPC
component needs to be integrated.

OpenSSL APOpenSSL
The mPaaS version, which optimizes the original
national secret algorithm, must be used. For
more details, please refer to How to solve the
OpenSSL conflict in iOS projects.

protocolBuffers APProtocolBuffers The mPaaS version must be used.

Solutions to non-mPaaS custom libraries
If conflicting mPaaS SDK libraries are not mPaaS custom libraries, you can delete the libraries
introduced by mPaaS. The deletable libraries are shown in the following table. For details, see
Remove conflicting third-party libraries to remove the conflicting libraries.

Components supported by remove_pod Open-source libraries contained

mPaaS_SDWebImage SDWebImage

mPaaS_Masonry Masonry

mPaaS_MBProgressHud MBProgressHUD

mPaaS_TTTAttributedLabel TTTAttributedLabel

mPaaS_Lottie Lottie

mPaaS_AMap

AMapSearchKit

AMapFoundationKit

MAMapKit

mPaaS_Security
SecurityGuard
SGMain

mPaaS_APWebP WebP

Remove conflicting third-party libraries

Access iOS User Guide·Reference

> Document Version: 20231226 78

If the conflicting mPaaS SDK library is not a mPaaS custom library, you can delete the library
introduced by mPaaS according to the following procedures.

Procedure
1. Install the beta version of the cocoapods-mPaaS plug-in.

Note
The beta version of the cocoapods-mPaaS plug-in is supported only in the 10.1.68
baseline.

sh <(curl -s http://mpaas-ios-test.oss-cn-
hangzhou.aliyuncs.com/cocoapods/installmPaaSCocoaPodsPlugin.sh)

After the installation is completed, run the command pod mpaas version --plugin to
verify that the installed version is the beta version.

2. Run the pod mpaas update 10.1.68 command again to update the local baseline.
3. Introduce remove_pod "mPaaS_xxx" to podfile and be sure to place remove_pod before a

common mPaaS_pod command.
For example, to remove SDWebImage, run this command: remove_pod
“mPaaS_SDWebImage”.

remove_pod "mPaaS_SDWebImage"
mPaaS_pod "mPaaS_CommonUI"
pod 'xxx' # The corresponding third-party native library

4. After you remove the mPaaS component library, you can run the pod install command
to introduce the native version.

During app development, the app environment (namely, workspace) may occasionally
change, and the app may be developed in multiple workspaces in parallel. mPaaS provides a
tool for you to conveniently switch among environments (workspaces) during development.
There are two types of workspace switching modes:

Static workspace switching
Dynamic workspace switching

Static workspace switching
In static workspace switching, the default meta.config configuration file in the project is
manually replaced on the client and then repackaged for access in a new workspace.

Note
This method is only applicable to scenarios where only the configuration information of
the current application environment is updated.

1. Replace the meta.config file of the current project with the mPaaS plug-in.
2. Delete and then reinstall the app and the new workspace configuration information takes

effect immediately.

Dynamic workspace switching

6.3. Switch iOS environment

Access iOS User Guide·Reference

> Document Version: 20231226 79

In dynamic workspace switching, workspace options in mobile phone settings are modified to
dynamically modify the app workspace information without repackaging on the client.

Note
This mode applies to a scenario where an app is developed in multiple workspaces
in parallel and is frequently switched among them in the development phase.
The dynamic workspace switching feature is only supported on Apsara Stack.

Restricted by the mPaaS security signature verification mechanism, updating workspace
configuration information modifies the WSG signature verification image yw_1222.jpg .
Therefore, dynamic workspace switching has two restrictions.

The dynamic workspace switching mode applies only to the development phase. Therefore,
be sure to delete the corresponding configuration before the app is released.
Signature verification for network requests must be disabled in the mPaaS console.
Otherwise, requests will fail due to incorrect signature verification image information.

![ddd](http://docs-aliyun.cn-hangzhou.oss.aliyun-
inc.com/assets/pic/111262/AntCloud_zh/1552905359956/%E5%9B%BE%E7%89%874.png)

Workspace information configuration
1. Enable dynamic workspace switching. Specifically, rewrite the enableSettingService

method in category of MPaaSInterface and return YES.

 @implementation MPaaSInterface (Portal)

 - (BOOL)enableSettingService
 {
 return YES;
 }

 @end

2. Download the workspace configuration file Settings.bundle.zip, and then add it to the
project.

3. Understand the workspace configuration information in Setting.bundle .

 Setting.bundle provides four workspaces by default, corresponding to the 4
configuration files: Debug, Sit, Release, and Custom respectively.
Among them, Debug, Sit and Release are preset workspaces. You need to download the
configuration files of the target workspaces from the mPaaS console. Rename them to
Debug, Sit, and Release, and use them to replace the example files in the original
 Setting. bundle .

Access iOS User Guide·Reference

> Document Version: 20231226 80

https://gw.alipayobjects.com/os/bmw-prod/c890e3f3-f99f-4265-baf4-4ef0efd09a5b.zip

The Custom workspace applies to a scenario where repackaging is not performed on the
client and app workspace information is directly configured in mobile phone settings. The
configuration path on a mobile phone is Settings > Current app > Settings >
Customizing. Enter the corresponding values based on the downloaded configuration
information.
To preset more workspaces in addition to the default Debug, Sit, Release, and Custom
workspaces, add a configuration item in Setting. bundle/Service. plist and add the
corresponding configuration file. The format is as follows:

Dynamic workspace switching
After the Settings.bundle workspace configuration file is added, the app configuration
information will overwrite the default meta.config file in the project, and the workspace
selected in Settings.bundle prevails. The path for viewing the currently selected
workspace is: Mobile phone Settings > mPaaS app > Settings > Category. The Sit
workspace is selected by default.

Access iOS User Guide·Reference

> Document Version: 20231226 81

To switch to another workspace, go to Mobile phone Settings > mPaaS app > Settings
> Category and select the workspace. End the process and start it again for the new
workspace to take effect.

Access iOS User Guide·Reference

> Document Version: 20231226 82

This section describes the mPaaS framework FAQ. Click a question to view its answer.
The error ERROR: Failed to build gem native extension.d occurred when I upgraded
RubyGems.
The error Library not loaded occurred when I installed the RVM.
The error Lazy symbol binding failed occurred when I installed the RVM.
How to use my UIApplication delegate class?
How to exit all micro applications and return to the Launcher?
If Application B exists on top of Application A, how can Application B restart Application A
and pass arguments?
After the base class is inherited from DTViewController, the VC created using the XIB shows
a white screen after it is opened.

The error ERROR: Failed to build gem native extension.d occurred when I
upgraded RubyGems.
If the error ERROR: Failed to build gem native extension. occurs when you upgrade
RubyGems, install the Xcode command line tool and try again.

xcode-select --install

The error Library not loaded occurred when I installed the RVM.
If the error For dyld: Library not loaded: /usr/local/lib/libgmp.10.dylib occurred when
you install Ruby 2.2.4 using the RVM, run the following command and try again.

brew update && brew install gmp

The error Lazy symbol binding failed occurred when I installed the
RVM.
If the error dyld: lazy symbol binding failed: Symbol not found: _clock_gettime occurs
when you install Ruby 2.2.4 using the RVM, install the Xcode command line tool and try again.

xcode-select --install

How to use my UIApplication delegate class?
If you do not use the mPaaS framework, you can override DFClientDelegate in the main
method with your own class.

How to exit all micro applications and return to the Launcher?
[DTContextGet() startApplication:@"app ID of the launcher" params:nil
animated:kDTMicroApplicationLaunchModePushNoAnimation];

If Application B exists on top of Application A, how can
Application B restart Application A and pass arguments?

7.FAQ of mPaaS framework
Access iOS User Guide·FAQ of mPaaS fra

mework

> Document Version: 20231226 83

Suppose Application A is started, and Application B on its top is also started. In this case,
when Application A is restarted, Application B (and all applications on top of Application A) will
exit.

[DTContextGet() startApplication:@"name of A" params:@{@"arg": @"something"}
launchMode:kDTMicroApplicationLaunchModePushWithAnimation];

Meanwhile, DTMicroApplicationDelegate of Application A will receive the following event,
with arguments carried in options .

- (void)application:(DTMicroApplication *)application willResumeWithOptions:
(NSDictionary *)options
{
}

After the base class is inherited from DTViewController, the VC
created using the XIB shows a white screen after it is opened.
Rewrite the loadView method in category of DTViewController , as shown in the following
code.

@interface DTViewController (NibSupport)
@end

@implementation DTViewController (NibSupport)

- (void)loadView
{
 [super loadView];
}

@end

Access iOS User Guide·FAQ of mPaaS fra
mework

> Document Version: 20231226 84

	1.Integration method introduction
	2.Create an application
	3.Integrate by using CocoaPods based on the existing project
	4.Advanced guide
	4.1. mPaaS directory structure
	4.2. mPaaS iOS framework
	4.3. mPaaS Micro Applications and Services
	4.3.1. Create a micro application
	4.3.2. Create a service
	4.3.3. Manage the micro application and service
	4.3.4. Code sample of micro application

	4.4. iOS language settings
	4.5. Customize the city selection

	5.Adaption to iOS
	5.1. Upgrade guide of mPaaS 10.1.68
	5.2. Privacy permission
	5.3. mPaaS 10.1.60 baseline upgrade guide
	5.4. Adapt to WKWebview
	5.5. mPaaS 10.1.68 baseline adapt to Xcode 13
	5.6. mPaaS 10.1.68 baseline adapt to iOS 15
	5.7. mPaaS 10.1.68 baseline adapt to iOS 14
	5.8. mPaaS 10.1.60 baseline adapt to iOS 13
	5.9. mPaaS 10.1.32 baseline adapt to iOS 13

	6.Reference
	6.1. Customize the iOS navigation bar
	6.2. Handle iOS conflict
	6.3. Switch iOS environment

	7.FAQ of mPaaS framework

